A computational and combinatorial exposé of plethystic calculus

Abstract

In recent years, plethystic calculus has emerged as a powerful technical tool for studying symmetric polynomials. In particular, some striking recent advances in the theory of Macdonald polynomials have relied heavily on plethystic computations. The main purpose of this article is to give a detailed explanation of a method for finding combinatorial interpretations of many commonly occurring plethystic expressions, which utilizes expansions in terms of quasisymmetric functions. To aid newcomers to plethysm, we also provide a self-contained exposition of the fundamental computational rules underlying plethystic calculus. Although these rules are well-known, their proofs can be difficult to extract from the literature. Our treatment emphasizes concrete calculations and the central role played by evaluation homomorphisms arising from the universal mapping property for polynomial rings.

References

  1. 1.

    Agaoka, Y.: An algorithm to calculate the plethysms of Schur functions. Mem. Fac. Integr. Arts Sci. Hiroshima Univ. IV 21, 1–17 (1995)

    Google Scholar 

  2. 2.

    Atiyah, M.: Power operations in K-theory. Quart. J. Math. 17, 165–193 (1966)

    MATH  Article  MathSciNet  Google Scholar 

  3. 3.

    Atiyah, M., Tall, D.: Group representations, λ-rings, and the J-homomorphism. Topology 8, 253–297 (1969)

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    Bergeron, F., Bergeron, N., Garsia, A., Haiman, M., Tesler, G.: Lattice diagram polynomials and extended Pieri rules. Adv. Math. 2, 244–334 (1999)

    Article  MathSciNet  Google Scholar 

  5. 5.

    Bergeron, F., Garsia, A.: Science fiction and Macdonald polynomials. In: CRM Proceedings and Lecture Notes AMS VI, vol. 3, pp. 363–429 (1999)

  6. 6.

    Bergeron, F., Garsia, A., Haiman, M., Tesler, G.: Identities and positivity conjectures for some remarkable operators in the theory of symmetric functions. Methods Appl. Anal. VII 3, 363–420 (1999)

    MathSciNet  Google Scholar 

  7. 7.

    Bourbaki, N.: Elements of Mathematics: Algebra II. Springer, Berlin (1990), Chaps. 4–7

    MATH  Google Scholar 

  8. 8.

    Carvalho, M., D’Agostino, S.: Plethysms of Schur functions and the shell model. J. Phys. A: Math. Gen. 34, 1375–1392 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  9. 9.

    Chen, Y., Garsia, A., Remmel, J.: Algorithms for plethysm. In: Greene, C. (ed.) Combinatorics and Algebra. Contemp. Math., vol. 34, pp. 109–153 (1984)

  10. 10.

    Duncan, D.: On D.E. Littlewood’s algebra of S-functions. Can. J. Math. 4, 504–512 (1952)

    MATH  Article  Google Scholar 

  11. 11.

    Foulkes, H.: Concomitants of the quintic and sextic up to degree four in the coefficients of the ground form. J. Lond Math. Soc. 25, 205–209 (1950)

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    Garsia, A.: Lecture notes from 1998 (private communication)

  13. 13.

    Garsia, A., Haglund, J.: A proof of the q,t-Catalan positivity conjecture. Discrete Math. 256, 677–717 (2002)

    MATH  Article  MathSciNet  Google Scholar 

  14. 14.

    Garsia, A., Haglund, J.: A positivity result in the theory of Macdonald polynomials. Proc. Natl. Acad. Sci. 98, 4313–4316 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  15. 15.

    Garsia, A., Haiman, M.: A remarkable q,t-Catalan sequence and q-Lagrange inversion. J. Algebr. Comb. 5, 191–244 (1996)

    MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    Garsia, A., Haiman, M., Tesler, G.: Explicit plethystic formulas for Macdonald q,t-Kostka coefficients. In: Sém. Lothar. Combin., vol. 42, article B42m (1999), 45 pp.

  17. 17.

    Garsia, A., Remmel, J.: Plethystic formulas and positivity for q,t-Kostka coefficients. In: Progr. Math., vol. 161, pp. 245–262 (1998)

  18. 18.

    Garsia, A., Tesler, G.: Plethystic formulas for Macdonald q,t-Kostka coefficients. Adv. Math. 123, 144–222 (1996)

    MATH  Article  MathSciNet  Google Scholar 

  19. 19.

    Geissenger, L.: Hopf Algebras of Symmetric Functions and Class Functions. Lecture Notes in Math., vol. 579. Springer, Berlin (1976)

    Google Scholar 

  20. 20.

    Gessel, I.: Multipartite P-partitions and inner products of skew Schur functions. In: Combinatorics and Algebra (Boulder, Colo., 1983). Contemp. Math., vol. 34, pp. 289–317 (1984)

  21. 21.

    Grothendieck, A.: La theorie des classes de Chern. Bull. Soc. Math. Fr. 86, 137–154 (1958)

    MATH  MathSciNet  Google Scholar 

  22. 22.

    Haglund, J.: A proof of the q,t-Schröder conjecture. Int. Math. Res. Not. 11, 525–560 (2004)

    Article  MathSciNet  Google Scholar 

  23. 23.

    Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for Macdonald polynomials. J. Am. Math. Soc. 18, 735–761 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  24. 24.

    Haglund, J., Haiman, M., Loehr, N., Remmel, J., Ulyanov, A.: A combinatorial formula for the character of the diagonal coinvariants. Duke Math. J. 126, 195–232 (2005)

    MATH  Article  MathSciNet  Google Scholar 

  25. 25.

    Hoffman, P.: τ-rings and Wreath Product Representations. Lecture Notes in Math., vol. 706. Springer, Berlin (1979)

    MATH  Google Scholar 

  26. 26.

    Ibrahim, E.: On D.E. Littlewood’s algebra of S-functions. Proc. Am. Math. Soc. 7, 199–202 (1956)

    MATH  MathSciNet  Google Scholar 

  27. 27.

    James, G., Kerber, A.: The Representation Theory of the Symmetric Group. Encyclopedia of Math. and Its Appl., vol. 16. Addison-Wesley, Reading (1981)

    MATH  Google Scholar 

  28. 28.

    Knutson, D.: λ-rings and the Representation Theory of the Symmetric Group. Lecture Notes in Math., vol. 308. Springer, Berlin (1976)

    Google Scholar 

  29. 29.

    Lascoux, A.: Symmetric Functions & Combinatorial Operators on Polynomials. CBMS/AMS Lecture Notes, vol. 99 (2003)

  30. 30.

    Lascoux, A., Leclerc, B., Thibon, J.-Y.: Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys. 38, 1041–1068 (1997)

    MATH  Article  MathSciNet  Google Scholar 

  31. 31.

    Littlewood, D.: Invariant theory, tensors and, group characters. Philos. Trans. R. Soc. A 239, 305–365 (1944)

    MATH  Article  MathSciNet  Google Scholar 

  32. 32.

    Littlewood, D.: The Theory of Group Characters, 2nd edn. Oxford University Press, London (1950)

    MATH  Google Scholar 

  33. 33.

    Macdonald, I.: A new class of symmetric functions. In: Actes du 20e Séminaire Lotharingien, vol. 372/S-20, pp. 131–171 (1988)

  34. 34.

    Macdonald, I.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, London (1995)

    MATH  Google Scholar 

  35. 35.

    Murnagham, F.: On the analyses of {m}{1k} and {m}{k}. Proc. Natl. Acad. Sci. 40, 721–723 (1954)

    Article  Google Scholar 

  36. 36.

    Remmel, J.: The Combinatorics of Macdonald’s \(D_{n}^{1}\) operator. In: Sém. Lothar. Combin., article B54As (2006), 55 pp.

  37. 37.

    Sagan, B.: The Symmetric Group: Representations, Combinatorial Algorithms, and Symmetric Functions. Wadsworth and Brooks/Cole, Belmont (1991)

    MATH  Google Scholar 

  38. 38.

    Stanley, R.: Enumerative Combinatorics, vol. 1. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  39. 39.

    Stanley, R.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  40. 40.

    Uehara, H., Abotteen, E., Lee, M.-W.: Outer plethysms and λ-rings. Arch. Math. 46, 216–224 (1986)

    MATH  Article  MathSciNet  Google Scholar 

  41. 41.

    Wybourne, B.: Symmetry Principles and Atomic Spectroscopy, with Appendix and Tables by P.H. Butler. Wiley, New York (1970)

    Google Scholar 

  42. 42.

    Yang, M.: An algorithm for computing plethysm coefficients. Discrete Math. 180, 391–402 (1998)

    MATH  Article  MathSciNet  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicholas A. Loehr.

Additional information

First author supported in part by National Security Agency grant H98230-08-1-0045.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Loehr, N.A., Remmel, J.B. A computational and combinatorial exposé of plethystic calculus. J Algebr Comb 33, 163–198 (2011). https://doi.org/10.1007/s10801-010-0238-4

Download citation

Keywords

  • Plethysm
  • Symmetric functions
  • Quasisymmetric functions
  • LLT polynomials
  • Macdonald polynomials