Journal of Algebraic Combinatorics

, Volume 33, Issue 1, pp 127–140 | Cite as

Non-abelian representations of the slim dense near hexagons on 81 and 243 points



We prove that the near hexagon \(Q(5,2)\times\mathbb{L}_{3}\) has a non-abelian representation in the extra-special 2-group \(2^{1+12}_{+}\) and that the near hexagon Q(5,2)Q(5,2) has a non-abelian representation in the extra-special 2-group \(2^{1+18}_{-}\). The description of the non-abelian representation of Q(5,2)Q(5,2) makes use of a new combinatorial construction of this near hexagon.


Near hexagon Non-abelian representation Extra-special 2-group 


  1. 1.
    Brouwer, A.E., Cohen, A.M., Hall, J.I., Wilbrink, H.A.: Near polygons and Fischer spaces. Geom. Dedic. 49, 349–368 (1994) MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    De Bruyn, B.: Generalized quadrangles with a spread of symmetry. Eur. J. Comb. 20, 759–771 (1999) MATHCrossRefGoogle Scholar
  3. 3.
    De Bruyn, B.: On the number of nonisomorphic glued near hexagons. Bull. Belg. Math. Soc. Simon Stevin 7, 493–510 (2000) MATHMathSciNetGoogle Scholar
  4. 4.
    De Bruyn, B., Thas, K.: Generalized quadrangles with a spread of symmetry and near polygons. Ill. J. Math. 46, 797–818 (2002) MATHGoogle Scholar
  5. 5.
    Doerk, K., Hawkes, T.: Finite Soluble Groups. de Gruyter Expositions in Mathematics, vol. 4. Walter de Gruyter, Berlin (1992) MATHGoogle Scholar
  6. 6.
    Gorenstein, D.: Finite Groups. Chelsea, New York (1980) MATHGoogle Scholar
  7. 7.
    Hirschfeld, J.W.P., Thas, J.A.: General Galois Geometries. Oxford Mathematical Monographs. Oxford Science Publications. Clarendon, New York (1991) MATHGoogle Scholar
  8. 8.
    Ivanov, A.A.: Non-abelian representations of geometries. In: “Groups and Combinatorics”—In Memory of Michio Suzuki. Adv. Stud. Pure Math., vol. 32, pp. 301–314. Math. Soc. Japan, Tokyo (2001) Google Scholar
  9. 9.
    Ivanov, A.A., Pasechnik, D.V., Shpectorov, S.V.: Non-abelian representations of some sporadic geometries. J. Algebra 181, 523–557 (1996) MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Patra, K.L., Sahoo, B.K.: A non-abelian representation of the dual polar space DQ(2n,2). Innov. Incidence Geom. 9, 177–188 (2009) MATHMathSciNetGoogle Scholar
  11. 11.
    Payne, S.E., Thas, J.A.: Finite Generalized Quadrangles, 2nd edn. EMS Series of Lectures in Mathematics. European Mathematical Society (EMS), Zürich (2009) MATHGoogle Scholar
  12. 12.
    Sahoo, B.K., Sastry, N.S.N.: A characterization of finite symplectic polar spaces of odd prime order. J. Comb. Theory, Ser. A 114, 52–64 (2007) MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Sahoo, B.K., Sastry, N.S.N.: On the order of a non-abelian representation group of a slim dense near hexagon. J. Algebraic Comb. 29, 195–213 (2009) MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of MathematicsGhent UniversityGentBelgium
  2. 2.School of Mathematical SciencesNational Institute of Science Education and ResearchBhubaneswarIndia
  3. 3.Statistics and Mathematics UnitIndian Statistical InstituteBangaloreIndia

Personalised recommendations