Journal of Algebraic Combinatorics

, Volume 32, Issue 3, pp 303–338

Schur positivity and the q-log-convexity of the Narayana polynomials

  • William Y. C. Chen
  • Larry X. W. Wang
  • Arthur L. B. Yang
Article

DOI: 10.1007/s10801-010-0216-x

Cite this article as:
Chen, W.Y.C., Wang, L.X.W. & Yang, A.L.B. J Algebr Comb (2010) 32: 303. doi:10.1007/s10801-010-0216-x

Abstract

We prove two recent conjectures of Liu and Wang by establishing the strong q-log-convexity of the Narayana polynomials, and showing that the Narayana transformation preserves log-convexity. We begin with a formula of Brändén expressing the q-Narayana numbers as a specialization of Schur functions and, by deriving several symmetric function identities, we obtain the necessary Schur-positivity results. In addition, we prove the strong q-log-concavity of the q-Narayana numbers. The q-log-concavity of the q-Narayana numbers Nq(n,k) for fixed k is a special case of a conjecture of McNamara and Sagan on the infinite q-log-concavity of the Gaussian coefficients.

Keywords

q-Log-concavity q-Log-convexity q-Narayana number Narayana polynomial Lattice permutation Schur positivity Littlewood–Richardson rule 

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • William Y. C. Chen
    • 1
  • Larry X. W. Wang
    • 1
  • Arthur L. B. Yang
    • 1
  1. 1.Center for Combinatorics, LPMC-TJKLCNankai UniversityTianjinP.R. China

Personalised recommendations