Journal of Algebraic Combinatorics

, Volume 32, Issue 2, pp 187–209 | Cite as

Cluster expansion formulas and perfect matchings

  • Gregg MusikerEmail author
  • Ralf Schiffler


We study cluster algebras with principal coefficient systems that are associated to unpunctured surfaces. We give a direct formula for the Laurent polynomial expansion of cluster variables in these cluster algebras in terms of perfect matchings of a certain graph G T,γ that is constructed from the surface by recursive glueing of elementary pieces that we call tiles. We also give a second formula for these Laurent polynomial expansions in terms of subgraphs of the graph G T,γ.

Cluster algebra Triangulated surface Principal coefficients F-polynomial Snake graph 


  1. 1.
    Amiot, C.: Cluster categories for algebras of global dimension 2 and quivers with potential. Ann. Inst. Fourier (to appear) Google Scholar
  2. 2.
    Assem, I., Brüstle, T., Charbonneau-Jodoin, G., Plamondon, P.G.: Gentle algebras arising from surface triangulations. Preprint, arXiv:0903.3347
  3. 3.
    Buan, A., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204, 572–612 (2006). arXiv:math.RT/0402054 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Buan, A.B., Marsh, R., Reiten, I.: Denominators of cluster variables. J. Lond. Math. Soc. 79(3), 589–611 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv. 81, 595–616 (2006). arXiv:math.RT/0410187 zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Caldero, P., Keller, B.: From triangulated categories to cluster algebras II. Ann. Sci. École Norm. Sup. (4) 39(6), 983–1009 (2006). arXiv:math.RT/0510251 zbMATHMathSciNetGoogle Scholar
  7. 7.
    Caldero, P., Keller, B.: From triangulated categories to cluster algebras. Invent. Math. 172, 169–211 (2008). arXiv:math.RT/0506018 zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Caldero, P., Zelevinsky, A.: Laurent expansions in cluster algebras via quiver representations. Mosc. Math. J. 6(3), 411–429 (2006). arXiv:math.RT/0604054 zbMATHMathSciNetGoogle Scholar
  9. 9.
    Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (A n case). Trans. Am. Math. Soc. 358(3), 1347–1364 (2006). arXiv:math.RT/0401316 zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations and cluster tilted algebras. Algebr. Represent. Theory 9(4), 359–376 (2006). arXiv:math.RT/0411238 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Carroll, G., Price, G.: Unpublished result Google Scholar
  12. 12.
    Elkies, N., Kuperberg, G., Larsen, M., Propp, J.: Alternating-sign matrices and domino tilings (Part I). J. Algebr. Comb. 1(2), 11–132 (1992). arXiv:math/9201305 CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fock, V., Goncharov, A.: Cluster ensembles, quantization and the dilogarithm. Preprint (2003). arXiv:math.AG/0311149
  14. 14.
    Fock, V., Goncharov, A.: Moduli spaces of local systems and higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103, 1–211 (2006) zbMATHMathSciNetGoogle Scholar
  15. 15.
    Fock, V., Goncharov, A.: Dual Teichmüller and lamination spaces. In: Handbook of Teichmüller Theory. Vol. I. IRMA Lect. Math. Theor. Phys., vol. 11, pp. 647–684. Eur. Math. Soc., Zürich (2007) CrossRefGoogle Scholar
  16. 16.
    Fomin, S., Thurston, D.: Cluster algebras and triangulated surfaces. Part II: Lambda lengths. Preprint (2008).
  17. 17.
    Fomin, S., Zelevinsky, A.: Cluster algebras I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002) (electronic). arXiv:math.RT/0104151 zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Fomin, S., Zelevinsky, A.: Cluster algebras IV: Coefficients. Comput. Math. 143, 112–164 (2007). arXiv:math.RA/0602259 zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Fomin, S., Zelevinsky, A.: Unpublished result Google Scholar
  20. 20.
    Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces. Part I: Cluster complexes. Acta Math. 201, 83–146 (2008). arXiv:math.RA/060836 zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Fu, C., Keller, B.: On cluster algebras with coefficients and 2-Calabi–Yau categories. Trans. Am. Math. Soc. (to appear). arXiv:0710.3152
  22. 22.
    Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Poisson geometry. Mosc. Math. J. 3(3), 899–934 (2003), 1199. arXiv:math.QA/0208033 zbMATHMathSciNetGoogle Scholar
  23. 23.
    Gekhtman, M., Shapiro, M., Vainshtein, A.: Cluster algebras and Weil–Petersson forms. Duke Math. J. 127(2), 291–311 (2005). arXiv:math.QA/0309138 zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Labardini-Fragoso, D.: Quivers with potentials associated to triangulated surfaces. Proc. Lond. Math. Soc. (to appear). arXiv:0803.1328
  25. 25.
    Musiker, G.: A graph theoretic expansion formula for cluster algebras of classical type. Ann. Comb. (to appear). arXiv:0710.3574
  26. 26.
    Musiker, G., Propp, J.: Combinatorial interpretations for rank-two cluster algebras of affine type. Electron. J. Comb. 14(1) (2007), Research Paper 15, 23 pp. (electronic). arXiv:math/0602408
  27. 27.
    Musiker, G., Schiffler, R., Williams, L.: Positivity for cluster algebras from surfaces. Preprint. arXiv:0906.0748
  28. 28.
    Palu, Y.: Cluster characters for triangulated 2-Calabi–Yau triangulated categories. Ann. Inst. Fourier 58(6), 2221–2248 (2008) zbMATHMathSciNetGoogle Scholar
  29. 29.
    Propp, J.: Lattice structure for orientations of graphs. Preprint (1993). arXiv:0209.5005 [math]
  30. 30.
    Propp, J.: The combinatorics of frieze patterns and Markoff numbers. Preprint (2005). arXiv:math.CO/0511633
  31. 31.
    Schiffler, R.: A cluster expansion formula (A n case), Electron. J. Comb. 15 (2008), #R64 1. arXiv:math.RT/0611956
  32. 32.
    Schiffler, R.: On cluster algebras arising from unpunctured surfaces II. Adv. Math. (to appear). arXiv:0809.2593
  33. 33.
    Schiffler, R., Thomas, H.: On cluster algebras arising from unpunctured surfaces. Int. Math. Res. Not. 17, 3160–3189 (2009). arXiv:0712.4131 MathSciNetGoogle Scholar
  34. 34.
    Sherman, P., Zelevinsky, A.: Positivity and canonical bases in rank 2 cluster algebras of finite and affine types. Mosc. Math. J. 4(4), 947–974 (2004), 982. arXiv:math.RT/0307082 zbMATHMathSciNetGoogle Scholar
  35. 35.
    Zelevinsky, A.: Semicanonical basis generators of the cluster algebra of type \(A^{(1)}_{1}\) . Electron. J. Comb. 14(1) (2007), Note 4, 5 pp. (electronic). arXiv:math.RA/0606775

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Mathematics, Room 2-336Massachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of MathematicsUniversity of ConnecticutStorrsUSA

Personalised recommendations