On Kazhdan-Lusztig cells in type B

  • 135 Accesses

  • 7 Citations


We prove that, for any choice of parameters, the Kazhdan-Lusztig cells of a Weyl group of type B are unions of combinatorial cells (defined using the domino insertion algorithm).


  1. 1.

    Bonnafé, C.: Two-sided cells in type B (asymptotic case). J. Algebra 304, 216–236 (2006)

  2. 2.

    Bonnafé, C.: Semicontinuity properties of Kazhdan-Lusztig cells. Preprint (2008), available at arXiv:0808.3522

  3. 3.

    Bonnafé, C., Geck, M., Iancu, L., Lam, T.: On domino insertion and Kazhdan-Lusztig cells in type B n . Progress in Mathematics (2009, to appear), available at arXiv:math/0609279

  4. 4.

    Bonnafé, C., Iancu, L.: Left cells in type B n with unequal parameters. Represent. Theory 7, 587–609 (2003)

  5. 5.

    Geck, M.: On the induction of Kazhdan-Lusztig cells. Bull. London Math. Soc. 35, 608–614 (2003)

  6. 6.

    Geck, M.: Computing Kazhdan-Lusztig cells for unequal. J. Algebra 281, 342–365 (2004)

  7. 7.

    Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori–Hecke Algebras. London Math. Soc. Monographs, New Series, vol. 21. Oxford University Press, London (2000)

  8. 8.

    Kazhdan, D.A., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165–184 (1979)

  9. 9.

    Lam, T.: Growth diagrams, domino insertion, and sign-imbalance. J. Comb. Theory Ser. A. 107, 87–115 (2004)

  10. 10.

    Lusztig, G.: Left cells in Weyl groups. In: Herb, R.L.R., Rosenberg, J. (eds.) Lie Group Representations I. Lecture Notes in Math., vol. 1024, pp. 99–111. Springer, Berlin (1983)

  11. 11.

    Lusztig, G.: Hecke Algebras with Unequal Parameters. CRM Monograph Series, vol. 18. American Mathematical Society, Providence (2003). 136 p.

  12. 12.

    Pietraho, T.: Knuth relations for the hyperoctahedral groups. J. Algebraic Combin. (2008, to appear), available at arXiv:0803.3335

  13. 13.

    Pietraho, T.: Module structure of cells in unequal parameter Hecke Algebras. Nagoya Math. J. (2009, to appear), available at arXiv:0902.1907

  14. 14.

    Taskin, M.: Plactic relations for r-domino tableaux. Preprint (2008), available at arXiv:0803.1148

  15. 15.

    van Leeuwen, M.: The Robinson-Schensted and Schutzenberger algorithms, an elementary approach, The Foata Festschrift. Electron. J. Combin. 3 (1996), Research Paper 15

  16. 16.

    Shimozono, M., White, D.E.: Color-to-spin ribbon Schensted algorithms. Discrete Math. 246, 295–316 (2002)

Download references

Author information

Correspondence to Cédric Bonnafé.

Additional information

The author is partly supported by the ANR (Project No JC07-192339).

An erratum to this article can be found at

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bonnafé, C. On Kazhdan-Lusztig cells in type B . J Algebr Comb 31, 53 (2010) doi:10.1007/s10801-009-0183-2

Download citation


  • Weyl group
  • Type B
  • Kazhdan-Lusztig theory
  • Unequal parameters
  • Cells