Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Quadratic Gröbner bases for smooth 3×3 transportation polytopes

  • 127 Accesses

  • 6 Citations


The toric ideals of 3×3 transportation polytopes \(\mathsf{T}_{\mathbf{rc}}\) are quadratically generated. The only exception is the Birkhoff polytope B 3.

If \(\mathsf{T}_{\mathbf{rc}}\) is not a multiple of B 3, these ideals even have square-free quadratic initial ideals. This class contains all smooth 3×3 transportation polytopes.


  1. 1.

    Baldoni-Silva, W., de Loera, J., Vergne, M.: Counting integer flows in networks. Found. Comput. Math. 4(3), 277–314 (2004)

  2. 2.

    Beck, M., Chen, B., Fukshansky, L., Haase, C., Knutson, A., Reznick, B., Robins, S., Schürmann, A.: Problems from the cottonwood room. In: Integer Points in Polyhedra—Geometry, Number Theory, Algebra, Optimization. Contemp. Math., vol. 374, pp. 179–191. Am. Math. Soc., Providence (2005)

  3. 3.

    Bögvad, R.: On the homogeneous ideal of a projective nonsingular toric variety. arXiv:alg-geom/9501012 (1995)

  4. 4.

    Bruns, W., Gubeladze, J., Trung, N.: Normal polytopes,triangulations and Koszul algebras. J. Reine Angew. Math. 485, 123–160 (1997)

  5. 5.

    Diaconis, P., Eriksson, N.: Markov bases for noncommutative Fourier analysis of ranked data. J. Symb. Comput. 41(2), 182–195 (2006)

  6. 6.

    Ewald, G., Schmeinck, A.: Representation of the Hirzebruch-Kleinschmidt varieties by quadrics. Beitr. Algebra Geom. 34(2), 151–156 (1991)

  7. 7.

    Fulton, W.: Introduction to toric varieties. In: The William H. Roever Lectures in Geometry. Annals of Mathematics Studies, vol. 131. Princeton University Press, Princeton (1993)

  8. 8.

    Gawrilow, E., Joswig, M.: Geometric reasoning with polymake. arXiv:math.CO/0507273 (2005)

  9. 9.

    Hellus, M., Hoa, L., Stückrad, J.: Gröbner bases for simplicial toric ideals. arXiv:0710.5347 (2007)

  10. 10.

    Koelman, R.: A criterion for the ideal of a projectively embedded surface to be generated by quadrics. Beitr. Algebra Geom. 34(1), 57–62 (1993)

  11. 11.

    Lee, C.W.: Subdivisions and triangulations of polytopes. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry, pp. 271–290. CRC Press, New York (1997)

  12. 12.

    Lenz, M.: Toric ideals of flow polytopes. Master’s thesis, Freie Universität Berlin (2007). arXiv:0709.3570, see also arXiv:0801.0495

  13. 13.

    Ohsugi, H., Hibi, T.: Convex polytopes all of whose reverse lexicographic initial ideals are squarefree. Proc. Am. Math. Soc. 129(9), 2541–2546 (2001)

  14. 14.

    Piechnik, L.C.: Smooth reflexive 4-polytopes have quadratic triangulations. Undergraduate thesis, Duke University (2004)

  15. 15.

    Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)

  16. 16.

    Sturmfels, B.: Equations defining toric varieties. In: Algebraic Geometry—Santa Cruz 1995. Proc. Sympos. Pure Math., vol. 62, pp. 437–449. Am. Math. Soc., Providence (1997). arXiv:alg-geom/9610018

  17. 17.

    Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, vol. 8. Am. Math. Soc., Providence (1996)

  18. 18.

    Sullivant, S.: Compressed polytopes and statistical disclosure limitation. Tohôku Math. J. 58(3), 433–445 (2006). arXiv:math.CO/0412535

Download references

Author information

Correspondence to Andreas Paffenholz.

Additional information

Both authors were supported by Emmy Noether grant HA 4383/1 of the German Research Foundation (DFG).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Haase, C., Paffenholz, A. Quadratic Gröbner bases for smooth 3×3 transportation polytopes. J Algebr Comb 30, 477 (2009). https://doi.org/10.1007/s10801-009-0173-4

Download citation


  • Toric ideal
  • Gröbner basis
  • Quadratic triangulation
  • Transportation polytope