Advertisement

Bounds for codes and designs in complex subspaces

  • Aidan Roy
Article

Abstract

We introduce the concepts of complex Grassmannian codes and designs. Let \(\mathcal{G}_{m,n}\) denote the set of m-dimensional subspaces of ℂ n : then a code is a finite subset of \(\mathcal{G}_{m,n}\) in which few distances occur, while a design is a finite subset of \(\mathcal{G}_{m,n}\) that polynomially approximates the entire set. Using Delsarte’s linear programming techniques, we find upper bounds for the size of a code and lower bounds for the size of a design, and we show that association schemes can occur when the bounds are tight. These results are motivated by the bounds for real subspaces recently found by Bachoc, Bannai, Coulangeon and Nebe, and the bounds generalize those of Delsarte, Goethals and Seidel for codes and designs on the complex unit sphere.

Keywords

Codes Designs Bounds Grassmannian spaces Complex subspaces Linear programming Delsarte Association schemes 

References

  1. 1.
    Agrawal, D., Richardson, T.J., Urbanke, R.L.: Multiple-antenna signal constellations for fading channels. IEEE Trans. Inf. Theory 47, 2618–2626 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bachoc, C.: Linear programming bounds for codes in Grassmannian spaces. IEEE Trans. Inf. Theory 52, 2111–2125 (2006) CrossRefMathSciNetGoogle Scholar
  3. 3.
    Bachoc, C., Bannai, E., Coulangeon, R.: Codes and designs in Grassmannian spaces. Discrete Math. 277, 15–28 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bachoc, C., Coulangeon, R., Nebe, G.: Designs in Grassmannian spaces and lattices. J. Algebr. Comb. 16, 5–19 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Böröczky Jr., K.: Finite Packing and Covering. Cambridge Tracts in Mathematics, vol. 154. Cambridge University Press, Cambridge (2004) zbMATHGoogle Scholar
  6. 6.
    Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin (1989) zbMATHGoogle Scholar
  7. 7.
    Bump, D.: Lie Groups. Graduate Texts in Mathematics, vol. 225. Springer, New York (2004) zbMATHGoogle Scholar
  8. 8.
    Calderbank, A.R., Hardin, R.H., Rains, E.M., Shor, P.W., Sloane, N.J.A.: A group-theoretic framework for the construction of packings in Grassmannian spaces. J. Algebr. Comb. 9, 129–140 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Conway, J.H., Hardin, R.H., Sloane, N.J.A.: Packing lines, planes, etc.: packings in Grassmannian spaces. Exp. Math. 5, 139–159 (1996) zbMATHMathSciNetGoogle Scholar
  10. 10.
    Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290. Springer, New York (1993) zbMATHGoogle Scholar
  11. 11.
    Delsarte, P.: An algebraic approach to the association schemes of coding theory. Philips Res. Rep. Suppl. (1973), vi+97 Google Scholar
  12. 12.
    Delsarte, P., Goethals, J.M., Seidel, J.J.: Bounds for systems of lines, and Jacobi polynomials. Philips Res. Rep. (1975), pp. 91–105 Google Scholar
  13. 13.
    Fulton, W., Harris, J.: Representation Theory. Springer, New York (1991) zbMATHGoogle Scholar
  14. 14.
    Godsil, C.D.: Polynomial spaces. In: Proceedings of the Oberwolfach Meeting “Kombinatorik”, vol. 73 (1986), pp. 71–88 (1989) Google Scholar
  15. 15.
    Godsil, C.D., Rötteler, M., Roy, A.: Mutually unbiased subspaces, in preparation Google Scholar
  16. 16.
    Godsil, C.D., Roy, A.: Mutually unbiased bases, equiangular lines, and spin models. Eur. J. Comb. 30, 246–262 (2009) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Goodman, R., Wallach, N.R.: Representations and Invariants of the Classical Groups. Encyclopedia of Mathematics and its Applications, vol. 68. Cambridge University Press, Cambridge (1998) zbMATHGoogle Scholar
  18. 18.
    Helgason, S.: Groups and Geometric Analysis. Pure and Applied Mathematics, vol. 113. Academic Press, Orlando (1984) zbMATHGoogle Scholar
  19. 19.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990) zbMATHGoogle Scholar
  20. 20.
    James, A.T., Constantine, A.G.: Generalized Jacobi polynomials as spherical functions of the Grassmann manifold. Proc. Lond. Math. Soc. (3) 29, 174–192 (1974) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Khatirinejad, M.: On Weyl-Heisenberg orbits of equiangular lines. J. Algebr. Comb. 28, 333–349 (2008) zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Levenshtein, V.: On designs in compact metric spaces and a universal bound on their size. Discrete Math. 192, 251–271 (1998) zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) zbMATHGoogle Scholar
  24. 24.
    Renes, J., Blume-Kohout, R., Scott, A.J., Caves, C.M.: Symmetric informationally complete quantum measurements. J. Math. Phys. 45, 2171 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Roy, A., Scott, A.J.: Weighted complex projective 2-designs from bases: optimal state determination by orthogonal measurements. J. Math. Phys. 48, 072110 (2007) CrossRefMathSciNetGoogle Scholar
  26. 26.
    Scott, A.J.: Tight informationally complete quantum measurements. J. Phys. A 39, 13507–13530 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Sepanski, M.R.: Compact Lie Groups. Graduate Texts in Mathematics, vol. 235. Springer, New York (2007) zbMATHGoogle Scholar
  28. 28.
    Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999) Google Scholar
  29. 29.
    Wong, Y.-c.: Differential geometry of Grassmann manifolds. Proc. Nat. Acad. Sci. USA 57, 589–594 (1967) zbMATHCrossRefGoogle Scholar
  30. 30.
    Zauner, G.: Quantendesigns. Ph.D. thesis, University of Vienna (1999) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Institute for Quantum Information Science & Department of Mathematics and StatisticsUniversity of CalgaryCalgaryCanada

Personalised recommendations