Journal of Algebraic Combinatorics

, Volume 30, Issue 3, pp 349–379 | Cite as

Frieze patterns for punctured discs

  • Karin Baur
  • Robert J. MarshEmail author


We construct frieze patterns of type D N with entries which are numbers of matchings between vertices and triangles of corresponding triangulations of a punctured disc. For triangulations corresponding to orientations of the Dynkin diagram of type D N , we show that the numbers in the pattern can be interpreted as specialisations of cluster variables in the corresponding Fomin-Zelevinsky cluster algebra. This is generalised to arbitrary triangulations in an appendix by Hugh Thomas.


Cluster algebra Frieze pattern Ptolemy rule Exchange relation Matching Riemann surface Disc Triangulation 


  1. 1.
    Broline, D., Crowe, D.W., Isaacs, I.M.: The geometry of frieze patterns. Geom. Dedic. 3, 171–176 (1974) zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Buan, A.B., Marsh, R.J., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 204, 572–618 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Burman, Y.M.: Triangulations of disc with boundary and the homotopy principle for functions without critical points. Ann. Glob. Anal. Geom. 17, 221–238 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Caldero, P.: Algèbres cluster et catégories cluster, talks at the meeting on Algèbres Clusters, Luminy, France, May 2005 Google Scholar
  5. 5.
    Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations. Commun. Math. Helv. 81, 595–616 (2006) zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Caldero, P., Chapoton, F., Schiffler, R.: Quivers with relations arising from clusters (A n case). Trans. Am. Math. Soc. 358, 1347–1364 (2006) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Carroll, G., Price, G.: Two new combinatorial models for the Ptolemy recurrence. Unpublished memo (2003) Google Scholar
  8. 8.
    Conway, J.H., Coxeter, H.S.M.: Triangulated discs and frieze patterns. Math. Gaz. 57, 87–94 (1973) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Conway, J.H., Coxeter, H.S.M.: Triangulated discs and frieze patterns. Math. Gaz. 57, 175–186 (1973) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Fomin, S., Shapiro, D., Thurston, D.: Cluster algebras and triangulated discs. Part I: Cluster complexes. Preprint arxiv:math.RA/0608367v3 (2006)
  11. 11.
    Fomin, S., Zelevinsky, A.: Cluster algebras I: Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Fomin, S., Zelevinsky, A.: Cluster algebras II: Finite type classification. Invent. Math. 154(1), 63–121 (2003) zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Fomin, S., Zelevinsky, A.: Y-systems and generalized associahedra. Ann. Math. 158(3), 977–1018 (2003) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Kuo, E.: Applications of graphical condensation for enumerating matchings and tilings. Theor. Comput. Sci. 319, 29–57 (2004) zbMATHCrossRefGoogle Scholar
  15. 15.
    Musiker, G.: A graph theoretic expansion formula for cluster algebras of type B n and D n. Preprint arXiv:0710.3574v1 [math.CO] (2007)
  16. 16.
    Propp, J.: The combinatorics of frieze patterns and Markoff numbers. Preprint arXiv:math.CO/0511633 (2005)
  17. 17.
    Ringel, C.M.: Tame Algebras and Integral Quadratic Forms. Lecture Notes in Mathematics, vol. 1099. Springer, Berlin (1984) zbMATHGoogle Scholar
  18. 18.
    Schiffler, R.: A geometric model for cluster categories of type D n. Preprint arXiv:math.RT/0608264 (2006)

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of MathematicsETH ZürichZürichSwitzerland
  2. 2.Department of Pure MathematicsUniversity of LeedsLeedsUK

Personalised recommendations