Journal of Algebraic Combinatorics

, Volume 28, Issue 4, pp 509–529 | Cite as

Pseudo 1-homogeneous distance-regular graphs

  • Aleksandar JurišićEmail author
  • Paul Terwilliger


Let Γ be a distance-regular graph of diameter d≥2 and a 1≠0. Let θ be a real number. A pseudo cosine sequence for θ is a sequence of real numbers σ 0,…,σ d such that σ 0=1 and c i σ i−1+a i σ i +b i σ i+1=θ σ i for all i∈{0,…,d−1}. Furthermore, a pseudo primitive idempotent for θ is E θ =s ∑ i=0 d σ i A i , where s is any nonzero scalar. Let \(\hat{v}\) be the characteristic vector of a vertex vVΓ. For an edge xy of Γ and the characteristic vector w of the set of common neighbours of x and y, we say that the edge xy is tight with respect to θ whenever θk and a nontrivial linear combination of vectors \(E\hat{x}\) , \(E\hat{y}\) and Ew is contained in \(\mathrm{Span}\{\hat{z}\mid z\in V{\Gamma},\ \partial(z,x)=d=\partial(z,y)\}\) . When an edge of Γ is tight with respect to two distinct real numbers, a parameterization with d+1 parameters of the members of the intersection array of Γ is given (using the pseudo cosines σ 1,…,σ d , and an auxiliary parameter ε).

Let S be the set of all the vertices of Γ that are not at distance d from both vertices x and y that are adjacent. The graph Γ is pseudo 1-homogeneous with respect to xy whenever the distance partition of S corresponding to the distances from x and y is equitable in the subgraph induced on S. We show Γ is pseudo 1-homogeneous with respect to the edge xy if and only if the edge xy is tight with respect to two distinct real numbers. Finally, let us fix a vertex x of Γ. Then the graph Γ is pseudo 1-homogeneous with respect to any edge xy, and the local graph of x is connected if and only if there is the above parameterization with d+1 parameters σ 1,…,σ d ,ε and the local graph of x is strongly regular with nontrivial eigenvalues a 1 σ/(1+σ) and (σ 2−1)/(σσ 2).


Distance-regular graphs Primitive idempotents Cosine sequence Locally strongly regular 1-homogeneous property Tight distance-regular graph Pseudo primitive idempotent Tight edges Pseudo 1-homogeneous 


  1. 1.
    Bannai, E., Ito, T.: Algebraic Combinatorics I: Association Schemes. Benjamin-Cummings, California (1984) zbMATHGoogle Scholar
  2. 2.
    Brouwer, A.E., Cohen, A.M., Neumaier, A.: Distance-Regular Graphs. Springer, Berlin, Heidelberg (1989) zbMATHGoogle Scholar
  3. 3.
    Curtin, B., Nomura, K.: 1-homogeneous, pseudo-1-homogeneous, and 1-thin distance-regular graphs. J. Comb. Theory Ser. B 93, 279–302 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Go, J.T., Terwilliger, P.M.: Tight distance-regular graphs and the subconstituent algebra. Eur. J. Comb. 23, 793–816 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Godsil, C.D.: Algebraic Combinatorics. Chapman and Hall, New York (1993) zbMATHGoogle Scholar
  6. 6.
    Jurišić, A., Koolen, J.: A local approach to 1-homogeneous graphs. Des. Codes Cryptogr. 21, 127–147 (2000) zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Jurišić, A., Koolen, J., Terwilliger, P.: Tight Distance-Regular Graphs. J. Algebr. Comb. 12, 163–197 (2000) zbMATHCrossRefGoogle Scholar
  8. 8.
    Pascasio, A.A.: Tight graphs and their primitive idempotents. J. Algebr. Comb. 10, 47–59 (1999) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Terwilliger, P.M.: The subconstituent algebra of a distance-regular graph; thin modules with endpoint one. Linear Algebra Appl. 356, 157–187 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Terwilliger, P.M.: An inequality involving the local eigenvalues of a distance-regular graph. J. Algebr. Comb. 19, 143–172 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Terwilliger, P.M., Weng, C.: Distance-regular graphs, pseudo primitive idempotents, and the Terwilliger algebra. Eur. J. Comb. 25(2), 287–298 (2004) zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Faculty of Computer and Informatic SciencesUniversity of LjubljanaLjubljanaSlovenia
  2. 2.Department of MathematicsUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations