Journal of Algebraic Combinatorics

, Volume 27, Issue 2, pp 143–162

Crystal graphs of irreducible \(\mathcal{U}_{v}({\widehat{\mathfrak{sl}}_{e}})\) -modules of level two and Uglov bipartitions

Article

DOI: 10.1007/s10801-007-0078-z

Cite this article as:
Jacon, N. J Algebr Comb (2008) 27: 143. doi:10.1007/s10801-007-0078-z

Abstract

We give a simple description of the natural bijection between the set of FLOTW bipartitions and the set of Uglov bipartitions (which generalizes the set of Kleshchev bipartitions). These bipartitions, which label the crystal graphs of irreducible \(\mathcal{U}_{v}({\widehat{\mathfrak{sl}}_{e}})\) -modules of level two, naturally appear in the context of the modular representation theory of Hecke algebras of type Bn.

Keywords

Hecke algebras Modular representations Canonical basis Crystal graph 

Mathematics Subject Classification (2000)

17B37 20C08 

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Université de Franche-Comté, UFR Sciences et TechniquesBesançonFrance

Personalised recommendations