Journal of Algebraic Combinatorics

, Volume 27, Issue 1, pp 1–21 | Cite as

A geometric model for cluster categories of type Dn

Article

Abstract

We give a geometric realization of cluster categories of type Dn using a polygon with n vertices and one puncture in its center as a model. In this realization, the indecomposable objects of the cluster category correspond to certain homotopy classes of paths between two vertices.

Keywords

Cluster category Triangulated surface Punctured polygon Elementary move 

References

  1. 1.
    Assem, I., Brüstle, T., Schiffler, R., & Todorov, G. (2006). Cluster categories and duplicated algebras. J. Algebra, 305, 547–561. arXiv:math.RT/0509501. CrossRefGoogle Scholar
  2. 2.
    Assem, I., Brüstle, T., Schiffler, R., & Todorov, G. (2006). m -cluster categories and m -replicated algebras. Preprint. arXiv:math.RT/0608727. Google Scholar
  3. 3.
    Assem, I., Simson, D., & Skowronski, A. (2006). Elements of the representation theory of associative algebras, 1: techniques of representation theory. London mathematical society student texts, Vol. 65. Cambridge: Cambridge University Press. Google Scholar
  4. 4.
    Auslander, M., Reiten, I., & Smalø, S. O. (1995). Representation theory of Artin algebras. Cambridge studies in advanced math., Vol. 36. Cambridge: Cambridge University Press. Google Scholar
  5. 5.
    Baur, K., & Marsh, R. (2006). A geometric description of m -cluster categories. Trans. Am. Math. Soc., to appear. arXiv:math.RT/0607151. Google Scholar
  6. 6.
    Buan, A., Marsh, R., Reineke, M., Reiten, I., & Todorov, G. (2006). Tilting theory and cluster combinatorics. Adv. Math., 204, 572–612. arXiv:math.RT/0402054. MATHMathSciNetGoogle Scholar
  7. 7.
    Buan, A. B., Marsh, R., & Reiten, I. (2007). Cluster-tilted algebras. Trans. Am. Math. Soc., 359, 323–332. arXiv:math.RT/0402075. MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Buan, A. B., Marsh, R., & Reiten, I. Cluster mutation via quiver representations. Comment. Math. Helv., to appear. arXiv:math.RT/0412077. Google Scholar
  9. 9.
    Buan, A., Marsh, R., Reiten, I., & Todorov, G. Clusters and seeds in acyclic cluster algebras. Proc. Am. Math. Soc., to appear. arXiv:math.RT/0510359. Google Scholar
  10. 10.
    Caldero, P., & Chapoton, F. (2006). Cluster algebras as Hall algebras of quiver representations. Comment. Math. Helv., 81(3), 595–616. arXiv:math.RT/0410187. MATHMathSciNetGoogle Scholar
  11. 11.
    Caldero, P., Chapoton, F., & Schiffler, R. (2006). Quivers with relations arising from clusters (A n case). Trans. Am. Math. Soc., 358(3), 1347–1364. arXiv:math.RT/0401316. MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Caldero, P., Chapoton, F., & Schiffler, R. (2006). Quivers with relations and cluster tilted algebras. Algebr. Represent. Theory, 9(4), 359–376. arXiv:math.RT/0411238. MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Caldero, P., & Keller, B. From triangulated categories to cluster algebras. Invent. Math., to appear. arXiv:math.RT/0506018. Google Scholar
  14. 14.
    Caldero, P., & Keller, B. From triangulated categories to cluster algebras II. Ann. Sci. École Norm. Sup., to appear. arXiv:math.RT/0510251. Google Scholar
  15. 15.
    Fomin, S., & Zelevinsky, A. (2002). Cluster algebras I. Foundations. J. Am. Math. Soc., 15(2), 497–529 (electronic). arXiv:math.RT/0104151. MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Fomin, S., & Zelevinsky, A. (2003). Cluster algebras II. Finite type classification. Invent. Math., 154(1), 63–121. arXiv:math.RA/0208229. MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Fomin, S., Shapiro, M., & Thurston, D. (2006). Cluster algebras and triangulated surfaces. Part I: Cluster complexes. Preprint. arXiv:math.RA/0608367. Google Scholar
  18. 18.
    Gabriel, P. (1972). Unzerlegbare Darstellungen. Manuscripta Math., 6, 71–103. CrossRefMathSciNetGoogle Scholar
  19. 19.
    Gabriel, P. (1980). Auslander–Reiten sequences and representation-finite algebras. In Representation theory, I. Proc. Workshop, Carleton Univ., Ottawa, ON, 1979. Lecture notes in math. (Vol. 831, pp. 1–71). Berlin: Springer. CrossRefGoogle Scholar
  20. 20.
    Happel, D. (1988). Triangulated categories in the representation theory of finite dimensional algebras. London Mathematical Society, lecture notes series, Vol. 119. Cambridge: Cambridge University Press. Google Scholar
  21. 21.
    Keller, B. (2005). On triangulated orbit categories. Doc. Math., 10, 551–581 (electronic). arXiv:math.RT/0503240. MATHMathSciNetGoogle Scholar
  22. 22.
    Keller, B., & Reiten, I. (2005). Cluster-tilted algebras are Gorenstein and stably Calabi–Yau. Preprint. arXiv:math.RT/0512471. Google Scholar
  23. 23.
    Koenig, S., & Zhu, B. (2006). From triangulated categories to abelian categories—cluster tilting in a general framework. Preprint. arXiv:math.RT/0605100. Google Scholar
  24. 24.
    Riedtmann, C. (1990). Algebren, Darstellungsköcher, Überlagerungen und zurück. Comment. Math. Helv., 55(2), 199–224. MathSciNetGoogle Scholar
  25. 25.
    Ringel, C. M. (1984). Tame algebras and integral quadratic forms. Lecture notes in math., Vol. 1099. Berlin: Springer. Google Scholar
  26. 26.
    Zhu, B. (2006). Equivalences between cluster categories. J. Algebra, 304, 832–850. arXiv:math.RT/0511382. MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsUniversity of Massachusetts at AmherstAmherstUSA

Personalised recommendations