Journal of Algebraic Combinatorics

, Volume 26, Issue 4, pp 415–430 | Cite as

Alcove walks and nearby cycles on affine flag manifolds

  • Ulrich Görtz


Using Ram’s theory of alcove walks we give a proof of the Bernstein presentation of the affine Hecke algebra. The method works also in the case of unequal parameters. We also discuss how these results help in studying sheaves of nearby cycles on affine flag manifolds.


Conjugacy Class Weyl Group Algebr Comb Weyl Chamber Minimal Expression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Björner, A., Brenti, F.: Combinatorics of Coxeter Groups, Springer Graduate Texts in Mathematics, vol. 231 (2005) Google Scholar
  2. 2.
    Bourbaki, N.: Groupes et Algèbres de Lie. Chapters IV–VI. Masson, Paris (1981) Google Scholar
  3. 3.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local I. Inst. Ht. Études Sci. Publ. Math. 41, 5–251 (1972) zbMATHMathSciNetGoogle Scholar
  4. 4.
    Gaitsgory, D.: Construction of central elements in the affine Hecke algebra via nearby cycles. Invent. Math. 144, 253–280 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Görtz, U., Haines, T.: The Jordan-Hölder series for nearby cycles on some Shimura varieties and affine flag varieties, J. Reine Angew. Math. (to appear), math.AG/0402143 Google Scholar
  6. 6.
    Görtz, U., Haines, T.: Bounds on weights of nearby cycles and Wakimoto sheaves on affine flag manifolds. Manuscr. Math. 120(4), 347–358 (2006) zbMATHCrossRefGoogle Scholar
  7. 7.
    Görtz, U., Haines, T., Kottwitz, R., Reuman, D.: Dimensions of some affine Deligne-Lusztig varieties. Ann. Sci. de l’E.N.S. 4 Sér. 39, 467–511 (2006) zbMATHGoogle Scholar
  8. 8.
    Gaussent, S., Littelmann, P.: LS galleries, the path model, and MV cycles. Duke Math. J. 127(1), 35–88 (2005) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Haines, T., Kottwitz, R., Prasad, A.: Iwahori-Hecke algebras, math.RT/0309168 Google Scholar
  10. 10.
    Haines, T., Ngô, B.C.: Nearby cycles for local models of some Shimura varieties. Compos. Math. 133, 117–150 (2002) zbMATHCrossRefGoogle Scholar
  11. 11.
    Haines, T., Pettet, A.: Formulae relating the Bernstein and Iwahori-Matsumoto presentations of an affine Hecke algebra. J. Algebra 252(1), 127–149 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Humphreys, J.: Reflection groups and Coxeter groups, Camb. Stud. Adv. Math. vol. 29. Cambridge University Press, Cambridge (1990) zbMATHGoogle Scholar
  13. 13.
    Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2(3), 599–635 (1989) zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ram, A.: Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux. Pure Appl. Math. Q. 2(4), (2006) Google Scholar
  15. 15.
    Schwer, C.: Galleries, Hall-Littlewood polynomials, and structure constants of the spherical Hecke algebra, Int. Math. Res. Not. 2006, Art. ID 75395 (2006) Google Scholar
  16. 16.
    Schwer, C.: Galleries and q-analogs in combinatorial representation theory. PhD Thesis, Univ. zu Köln (2006) Google Scholar
  17. 17.
    Tits, J.: Le problème des mots dans les groupes de Coxeter. In: Symposia Mathematica, INDAM, Rome, 1967/1968, pp. 175–185. Academic Press (1969) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Mathematisches InstitutBonnGermany

Personalised recommendations