Journal of Algebraic Combinatorics

, Volume 26, Issue 4, pp 415–430 | Cite as

Alcove walks and nearby cycles on affine flag manifolds

Article

Abstract

Using Ram’s theory of alcove walks we give a proof of the Bernstein presentation of the affine Hecke algebra. The method works also in the case of unequal parameters. We also discuss how these results help in studying sheaves of nearby cycles on affine flag manifolds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Björner, A., Brenti, F.: Combinatorics of Coxeter Groups, Springer Graduate Texts in Mathematics, vol. 231 (2005) Google Scholar
  2. 2.
    Bourbaki, N.: Groupes et Algèbres de Lie. Chapters IV–VI. Masson, Paris (1981) Google Scholar
  3. 3.
    Bruhat, F., Tits, J.: Groupes réductifs sur un corps local I. Inst. Ht. Études Sci. Publ. Math. 41, 5–251 (1972) MATHMathSciNetGoogle Scholar
  4. 4.
    Gaitsgory, D.: Construction of central elements in the affine Hecke algebra via nearby cycles. Invent. Math. 144, 253–280 (2001) MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Görtz, U., Haines, T.: The Jordan-Hölder series for nearby cycles on some Shimura varieties and affine flag varieties, J. Reine Angew. Math. (to appear), math.AG/0402143 Google Scholar
  6. 6.
    Görtz, U., Haines, T.: Bounds on weights of nearby cycles and Wakimoto sheaves on affine flag manifolds. Manuscr. Math. 120(4), 347–358 (2006) MATHCrossRefGoogle Scholar
  7. 7.
    Görtz, U., Haines, T., Kottwitz, R., Reuman, D.: Dimensions of some affine Deligne-Lusztig varieties. Ann. Sci. de l’E.N.S. 4 Sér. 39, 467–511 (2006) MATHGoogle Scholar
  8. 8.
    Gaussent, S., Littelmann, P.: LS galleries, the path model, and MV cycles. Duke Math. J. 127(1), 35–88 (2005) MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Haines, T., Kottwitz, R., Prasad, A.: Iwahori-Hecke algebras, math.RT/0309168 Google Scholar
  10. 10.
    Haines, T., Ngô, B.C.: Nearby cycles for local models of some Shimura varieties. Compos. Math. 133, 117–150 (2002) MATHCrossRefGoogle Scholar
  11. 11.
    Haines, T., Pettet, A.: Formulae relating the Bernstein and Iwahori-Matsumoto presentations of an affine Hecke algebra. J. Algebra 252(1), 127–149 (2002) MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Humphreys, J.: Reflection groups and Coxeter groups, Camb. Stud. Adv. Math. vol. 29. Cambridge University Press, Cambridge (1990) MATHGoogle Scholar
  13. 13.
    Lusztig, G.: Affine Hecke algebras and their graded version. J. Am. Math. Soc. 2(3), 599–635 (1989) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Ram, A.: Alcove walks, Hecke algebras, spherical functions, crystals and column strict tableaux. Pure Appl. Math. Q. 2(4), (2006) Google Scholar
  15. 15.
    Schwer, C.: Galleries, Hall-Littlewood polynomials, and structure constants of the spherical Hecke algebra, Int. Math. Res. Not. 2006, Art. ID 75395 (2006) Google Scholar
  16. 16.
    Schwer, C.: Galleries and q-analogs in combinatorial representation theory. PhD Thesis, Univ. zu Köln (2006) Google Scholar
  17. 17.
    Tits, J.: Le problème des mots dans les groupes de Coxeter. In: Symposia Mathematica, INDAM, Rome, 1967/1968, pp. 175–185. Academic Press (1969) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Mathematisches InstitutBonnGermany

Personalised recommendations