Mixable shuffles, quasi-shuffles and Hopf algebras
Article
- 130 Downloads
- 40 Citations
Abstract
The quasi-shuffle product and mixable shuffle product are both generalizations of the shuffle product and have both been studied quite extensively recently. We relate these two generalizations and realize quasi-shuffle product algebras as subalgebras of mixable shuffle product algebras. As an application, we obtain Hopf algebra structures in free Rota–Baxter algebras.
Keywords
Hopf Algebra Commutative Ring Algebr Comb Admissible Pair Baxter Equation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Download
to read the full article text
References
- 1.M. Aguiar and J.-L. Loday, Quadri-algebras, J. Pure Applied Algebra, 191, (2004), 205–221. arXiv:math.QA/03090171.MathSciNetCrossRefzbMATHGoogle Scholar
- 2.G. E. Andrews, L. Guo, W. Keigher and K. Ono, Baxter algebras and Hopf algebras, Trans. AMS, 355 (2003), no. 11, 4639–4656.MathSciNetCrossRefzbMATHGoogle Scholar
- 3.G. Baxter, An analytic problem whose solution follows from a simple algebraic identity, Pacific J. Math., 10 (1960), 731–742.zbMATHMathSciNetGoogle Scholar
- 4.D. Bowman and D. M. Bradley, The algebra and combinatorics of shuffles and multiple zeta values, J. Combinatorial Theory Ser. A, 97 (1) (2002), 43–61. arXiv:math.CO/0310082MathSciNetCrossRefzbMATHGoogle Scholar
- 5.D. M. Bradley, Multiple q-zeta values, J. Algebra, 283 (2005), 752–798. arXiv:math.QA/0402093zbMATHMathSciNetCrossRefGoogle Scholar
- 6.P. Cartier, On the structure of free Baxter algebras, Adv. in Math., 9 (1972), 253–265.zbMATHMathSciNetCrossRefGoogle Scholar
- 7.K.T. Chen, Integration of paths, geometric invariants and a generalized Baker-Hausdorff formula, Ann. of Math., 65 (1957), 163–178.zbMATHMathSciNetCrossRefGoogle Scholar
- 8.A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem, Comm. Math. Phys., 210(1) (2000), 249–273. arXiv:hep-th/9912092Google Scholar
- 9.A. Connes and D. Kreimer, Renormalization in quantum field theory and the Riemann-Hilbert problem. II. The thβ-function, diffeomorphisms and the renormalization group, Comm. Math. Phys., 216(1) (2001), 215–241. arXiv:hep-th/0003188Google Scholar
- 10.K. Ebrahimi-Fard, Loday-type algebras and the Rota—Baxter relation, Letters in Mathematical Physics, 61(2) (2002), 139–147.zbMATHMathSciNetCrossRefGoogle Scholar
- 11.K. Ebrahimi-Fard, On the associative Nijenhuis algebras, The Electronic Journal of Combinatorics, Volume 11(1), R38, (2004). arXiv:math-ph/0302062zbMATHMathSciNetGoogle Scholar
- 12.K. Ebrahimi-Fard and L. Guo, On products and duality of binary, quadratic regular operads, J. Pure Applied Algebra, 200 (2005), 293–317. arXiv:math.RA/0407162MathSciNetCrossRefzbMATHGoogle Scholar
- 13.K. Ebrahimi-Fard and L. Guo, Rota-Baxter Algebras, Dendriform Algebras and Poincaré—Birkhoff—Witt Theorem, preprint, arXiv:math.RA/0503342.Google Scholar
- 14.K. Ebrahimi-Fard and L. Guo, Rota—Baxter algebras and multiple zeta values, preprint, 2005, http://newark.rutgers.edu/liguo.
- 15.K. Ebrahimi-Fard, L. Guo and D. Kreimer, Integrable Renormalization I: the ladder case, J. Math. Phys., 45 (2004), 3758–2769. arXiv:hep-th/0402095MathSciNetCrossRefzbMATHGoogle Scholar
- 16.K. Ebrahimi-Fard, L. Guo and D. Kreimer, Integrable Renormalization II: the general case, Annales Henri Poincaré, 6 (2005), 369–395. arXiv:hep-th/0403118MathSciNetCrossRefzbMATHGoogle Scholar
- 17.K. Ebrahim-Fard, L. Guo and D. Kreimer, Spitzer’s Identity and the Algebraic Birkhoff Decomposition in pQFT, J. Phys. A: Math. Gen., 37 (2004), 11037–11052. arXiv:hep-th/0407082CrossRefGoogle Scholar
- 18.F. Fares, Quelques constructions d’algébres et de coalgébres’, Thesis, Université du Québec á Montréal.Google Scholar
- 19.A. B. Goncharov, Periods and mixed motives, preprint, arXiv:math.AG/0202154.Google Scholar
- 20.L. Guo, Baxter algebra and differential algebra, in: Differential Algebra and Related Topics, World Scientific Publishing Company, (2002), 281–305. arXiv:math.RA/0407180Google Scholar
- 21.L. Guo, Baxter algebras and the umbral calculus, Adv. in Appl. Math., 27 (2–3) (2001), 405–426.zbMATHMathSciNetCrossRefGoogle Scholar
- 22.L. Guo, Baxter algebras, Stirling numbers and partitions, J. Algebra and Its Appl., 4 (2005), 153–164. arXiv:math.AC/0402348zbMATHCrossRefGoogle Scholar
- 23.L. Guo and W. Keigher, Free Baxter algebras and shuffle products, Adv. in Math., 150 (2000), 117–149. arXiv:math.RA/0407155MathSciNetCrossRefzbMATHGoogle Scholar
- 24.L. Guo and W. Keigher, On Baxter algebras: completions and the internal construction, Adv. in Math., 151 (2000), 101–127.MathSciNetCrossRefzbMATHGoogle Scholar
- 25.M. E. Hoffman, The algebra of multiple harmonic series, J. Algebra, 194(2), (1997), 477–495.zbMATHMathSciNetCrossRefGoogle Scholar
- 26.M. E. Hoffman, Quasi-shuffle products, J. Algebraic Combin., 11(1), (2000), 49–68.zbMATHMathSciNetCrossRefGoogle Scholar
- 27.M. E. Hoffman, Algebraic aspects of multiple zeta values, to appear in Zeta functions, topology and quantum physics, Springer-Verlag, 2005. arXiv: math.QA/0309425.Google Scholar
- 28.M. E. Hoffman, Y. Ohno, Relations of multiple zeta values and their algebraic expression, J. Algebra, 262 (2003), 332–347.MathSciNetCrossRefzbMATHGoogle Scholar
- 29.D. Kreimer, On the Hopf algebra structure of perturbative quantum field theories, Adv. Theor. Math. Phys., 2 (1998), 303–334. arXiv:q-alg/9707029zbMATHMathSciNetGoogle Scholar
- 30.D. Kreimer, Chen’s iterated integral represents the operator product expansion, Adv. Theor. Math. Phys., 3 (1999), 627–670. arXiv:hep-th/9901099zbMATHMathSciNetGoogle Scholar
- 31.P. Leroux, Ennea-algebras, J. Algebra, 281 (2004), 287–302. arXiv:math.QA/0309213.zbMATHMathSciNetCrossRefGoogle Scholar
- 32.Z. Lin and D. Nakano, Representations of Hopf algebras arising from Lie algebras of Cartan type, J. Algebra, 189 (1997), 529–567.MathSciNetCrossRefzbMATHGoogle Scholar
- 33.J.-L. Loday and M. Ronco, Trialgebras and families of polytopes, in “Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory” Contemporary Mathematics 346 (2004), 369–398, arXiv:math.AT/0205043.MathSciNetGoogle Scholar
- 34.S. Montgomery, Hopf Algebras and Their Actions on Rings, American Mathematical Society, Providence, 1993.Google Scholar
- 35.C. Reutenauer, Free Lie Algebras, Oxford University Press, Oxford, 1993.zbMATHGoogle Scholar
- 36.G.-C. Rota, Baxter algebras and combinatorial identities I, Bull. Amer. Math. Soc., 75 (1969), 325–329.zbMATHMathSciNetGoogle Scholar
- 37.G.-C. Rota, Baxter algebras and combinatorial identities II, Bull. Amer. Math. Soc., 75 (1969), 330–334.zbMATHMathSciNetCrossRefGoogle Scholar
- 38.G.-C. Rota and D. A. Smith, Fluctuation theory and Baxter algebras, Symposia Mathematica, Vol. IX (Convegno di Calcolo delle Probabilità, INDAM, Rome, 1971), pp. 179–201. Academic Press, London, (1972).Google Scholar
- 39.G.-C. Rota, Baxter operators, an introduction, In: Gian-Carlo Rota on Combinatorics, Introductory Papers and Commentaries, Joseph P.S. Kung, Editor, Birkhäuser, Boston, 1995.Google Scholar
- 40.G.-C. Rota, Ten mathematics problems I will never solve, Invited address at the joint meeting of the American Mathematical Society and the Mexican Mathematical Society, Oaxaca, Mexico, December 6, 1997. DMV Mittellungen Heft 2, 1998, 45–52.Google Scholar
- 41.F. Spitzer, A combinatorial lemma and its application to probability theory, Trans. Amer. Math. Soc., 82 (1956), 323–339.zbMATHMathSciNetCrossRefGoogle Scholar
- 42.M. A. Semenov-Tian-Shansky, Classical r-matrices, Lax equations, Poisson Lie groups and dressing transformations, In: Field theory, quantum gravity and strings, II (Meudon/Paris, 1985/1986), 174–214, Lecture Notes in Phys., 280 Springer, Berlin, (1987).zbMATHMathSciNetCrossRefGoogle Scholar
- 43.M. Sweedler, Hopf Algebras, Benjamin, New York, 1969.Google Scholar
Copyright information
© Springer Science + Business Media, LLC 2006