Journal of Algebraic Combinatorics

, Volume 21, Issue 2, pp 147–161 | Cite as

Species Over a Finite Field



We generalize Joyal’s theory of species to the case of functors from the groupoid of finite sets to the category of varieties over Fq. These have cycle index series defined by counting fixed points of twisted Frobenius maps. We give an application to configuration spaces.


species finite field configuration space 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-like Structures, vol. 67 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, 1998.Google Scholar
  2. 2.
    W. Fulton and R. Macpherson, “A compactification of configuration spaces,” Ann. of Math. 139 (1994), 183–225.Google Scholar
  3. 3.
    E. Getzler, “Mixed Hodge structures of configuration spaces,” preprint, MPI-96-61,
  4. 4.
    A. Joyal, “Une théorie combinatoire des séries formelles,” Adv. Math. 42 (1981), 1–82.CrossRefGoogle Scholar
  5. 5.
    A. Joyal, “Foncteurs analytiques et espèces de structures,” in Combinatoire Énumérative (Quebec, 1985), vol. 1234 of Lecture Notes in Mathematics, Springer, Berlin, 1986, pp. 126–159.Google Scholar
  6. 6.
    M. Kisin and G.I. Lehrer, “Equivariant Poincaré polynomials and counting points over finite fields,” J. Algebra 247 (2002), 435–451.CrossRefGoogle Scholar
  7. 7.
    I.G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Univ. Press, 1995.Google Scholar
  8. 8.
    Y.I. Manin, “Generating functions in algebraic geometry and sums over trees,” in The Moduli space of Curves (Texel Island, 1994), vol. 129 of Progress in Mathematics, Birkhauser Boston, Boston, 1995, pp. 401–417.Google Scholar
  9. 9.
    Y.I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, vol. 47 of American Mathematical Society Colloquium Publications, American Mathematical Society, 1999.Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsUniversity of SydneyAustralia

Personalised recommendations