Advertisement

Plasmon-enhanced hierarchical photoelectrodes with mechanical flexibility for hydrogen generation from urea solution and human urine

  • Jiayong Gan
  • Bharath Bangalore Rajeeva
  • Zilong Wu
  • Daniel Penley
  • Yuebing ZhengEmail author
Research Article
  • 25 Downloads
Part of the following topical collections:
  1. Solar Cells

Abstract

We have demonstrated plasmon-enhanced flexible and hierarchical photoanodes for hydrogen production from human urine in a photoelectrochemical cell. The photoanodes consist of cobalt-doped α-Fe2O3 nanorod arrays functionalized with Au nanoparticles and Ni(OH)2. The Au nanoparticles and Ni(OH)2 work as plasmonic nanostructures and urea oxidation catalyst, respectively. Benefiting from the plasmonic and catalytic effects, the photoanodes exhibit an AM 1.5 photocurrent of 5.0 ± 0.1 mA cm−2 (urea solution) and 7.5 ± 0.1 mA cm−2 (human urine) at 0.3 V versus Ag/AgCl. At a Pt counter electrode, continuous hydrogen gas evolution is achieved at a small bias. With their high performance and mechanical flexibility that facilitates the large-scale transportation and implementation in the field, the photoanodes are paving a sustainable way towards hydrogen production and urine treatment.

Graphic abstract

Keywords

Flexible photoelectrode Hydrogen production Photoelectrochemical cell Urine Plasmonic effects 

Notes

Acknowledgements

The authors acknowledge the financial support of the National Science Foundation (CBET-1704634).

Supplementary material

10800_2019_1369_MOESM1_ESM.docx (3 mb)
Supplementary material 1 (DOCX 3065 kb)

Supplementary material 2 (MP4 11855 kb)

Supplementary material 3 (MP4 20404 kb)

References

  1. 1.
    Stewart SM, Spernjak D, Borup R, Datye A, Garzon F (2014) Cerium migration through hydrogen fuel cells during accelerated stress testing. ECS Electrochem Lett 3(4):F19–F22CrossRefGoogle Scholar
  2. 2.
    Gao F, Zhao GL, Yang SZ (2014) Catalytic reactions on the open-edge sites of nitrogen-doped carbon nanotubes as cathode catalyst for hydrogen fuel cells. ACS Catal 4(5):1267–1273CrossRefGoogle Scholar
  3. 3.
    Bardhan R, Ruminski AM, Brand A, Urban JJ (2011) Magnesium nanocrystal-polymer composites: a new platform for designer hydrogen storage materials. Energy Environ Sci 4(12):4882–4895CrossRefGoogle Scholar
  4. 4.
    Lu YZ, Jin RT, Chen W (2011) Highly efficient hydrogen storage with PDAG nanotubes. Nanoscale 3(6):2476–2480CrossRefGoogle Scholar
  5. 5.
    Parrondo J, Han T, Niangar E, Wang C, Dale N, Adjemian K, Ramani V (2014) Platinum supported on titanium-ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles. Proc Natl Acad Sci USA 111(1):45–50CrossRefGoogle Scholar
  6. 6.
    Rollinson AN, Jones J, Dupont V, Twigg MV (2011) Urea as a hydrogen carrier: a perspective on its potential for safe, sustainable and long-term energy supply. Energy Environ Sci 4(4):1216–1224CrossRefGoogle Scholar
  7. 7.
    Asghar A, Raman AA, Daud WMW (2015) Challenges and recommendations for using membranes in wastewater-based microbial fuel cells for in situ fenton oxidation for textile wastewater treatment. Rev Chem Eng 31(1):45–67CrossRefGoogle Scholar
  8. 8.
    Mehmood A, Ha HY (2014) Performance restoration of direct methanol fuel cells in long-term operation using a hydrogen evolution method. Appl Energy 114:164–171CrossRefGoogle Scholar
  9. 9.
    Shaegh SAM, Ehteshami SMM, Chan SH, Nguyen NT, Tan SN (2014) Membraneless hydrogen peroxide micro semi-fuel cell for portable applications. RSC Adv 4(70):37284–37287CrossRefGoogle Scholar
  10. 10.
    Wang GM, Ling YC, Lu XH, Wang HY, Qian F, Tong YX, Li Y (2012) Solar driven hydrogen releasing from urea and human urine. Energy Environ Sci 5(8):8215–8219CrossRefGoogle Scholar
  11. 11.
    Boggs BK, King RL, Botte GG (2009) Urea electrolysis: direct hydrogen production from urine. Chem Commun 32:4859–4861CrossRefGoogle Scholar
  12. 12.
    Thomas G, Parks G (2006) Potential roles of ammonia in a hydrogen economy: a study of issues related to the use ammonia for on-board vehicular hydrogen storage. US Department of Energy, FebruaryGoogle Scholar
  13. 13.
    Yan W, Wang D, Diaz LA, Botte GG (2014) Nickel nanowires as effective catalysts for urea electro-oxidation. Electrochim Acta 134:266–271CrossRefGoogle Scholar
  14. 14.
    Ding R, Qi L, Jia MJ, Wang HY (2014) Facile synthesis of mesoporous spinel NiCo2O4 nanostructures as highly efficient electrocatalysts for urea electro-oxidation. Nanoscale 6(3):1369–1376CrossRefGoogle Scholar
  15. 15.
    Wang L, Du TT, Cheng J, Xie X, Yang BL, Li MT (2015) Enhanced activity of urea electrooxidation on nickel catalysts supported on tungsten carbides/carbon nanotubes. J Power Sources 280:550–554CrossRefGoogle Scholar
  16. 16.
    Vedharathinam V, Botte GG (2014) Experimental investigation of potential oscillations during the electrocatalytic oxidation of urea on Ni catalyst in alkaline medium. J Phys Chem C 118(38):21806–21812CrossRefGoogle Scholar
  17. 17.
    Wu MS, Lin GW, Yang RS (2014) Hydrothermal growth of vertically-aligned ordered mesoporous nickel oxide nanosheets on three-dimensional nickel framework for electrocatalytic oxidation of urea in alkaline medium. J Power Sources 272:711–718CrossRefGoogle Scholar
  18. 18.
    Zhong DK, Sun JW, Inumaru H, Gamelin DR (2009) Solar water oxidation by composite catalyst/alpha-Fe2O3 photoanodes. J Am Chem Soc 131(17):6086–6087CrossRefGoogle Scholar
  19. 19.
    Hou Y, Zuo F, Dagg A, Feng PY (2012) Visible light-driven alpha-fe2o3nanorod/graphene/Biv1-Xmoxo4 core/shell heterojunction array for efficient photoelectrochemical water splitting. Nano Lett 12(12):6464–6473CrossRefGoogle Scholar
  20. 20.
    Segev G, Dotan H, Malviya KD, Kay A, Mayer MT, Gratzel M, Rothschild A (2016) High solar flux concentration water splitting with hematite (alpha-Fe2O3) photoanodes. Adv Energy Mater.  https://doi.org/10.1002/aenm.201500817 CrossRefGoogle Scholar
  21. 21.
    Celorrio V, Bradley K, Weber OJ, Hall SR, Fermin DJ (2014) Photoelectrochemical properties of LaFeO3 nanoparticles. ChemElectroChem 1(10):1667–1671CrossRefGoogle Scholar
  22. 22.
    Wei YF, Ke L, Kong JH, Liu H, Jiao ZH, Lu XH, Du HJ, Sun XW (2012) Enhanced photoelectrochemical water-splitting effect with a bent ZnO nanorod photoanode decorated with Ag nanoparticles. Nanotechnology.  https://doi.org/10.1088/0957-4484/23/23/235401 CrossRefPubMedGoogle Scholar
  23. 23.
    Liu YM, Zhang X (2011) Metamaterials: a new frontier of science and technology. Chem Soc Rev 40(5):2494–2507CrossRefGoogle Scholar
  24. 24.
    Rajeeva BB, Hernandez DS, Wang M, Perillo E, Lin L, Scarabelli L, Pingali B, Liz-Marzán LM, Dunn AK, Shear JB (2015) Regioselective localization and tracking of biomolecules on single gold nanoparticles. Adv Sci 2(11):1500232CrossRefGoogle Scholar
  25. 25.
    Lin LH, Zheng YB (2015) Engineering of parallel plasmonic-photonic interactions for on-chip refractive index sensors. Nanoscale 7(28):12205–12214CrossRefGoogle Scholar
  26. 26.
    Boriskina SV, Ghasemi H, Chen G (2013) Plasmonic materials for energy: from physics to applications. Mater Today 16(10):375–386CrossRefGoogle Scholar
  27. 27.
    Warren SC, Thimsen E (2012) Plasmonic solar water splitting. Energy Environ Sci 5(1):5133–5146CrossRefGoogle Scholar
  28. 28.
    Catchpole KR, Polman A (2008) Plasmonic solar cells. Opt Express 16(26):21793–21800CrossRefGoogle Scholar
  29. 29.
    Christopher P, Xin HL, Linic S (2011) Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem 3(6):467–472CrossRefGoogle Scholar
  30. 30.
    Zhang TT, Zhao HY, He SN, Liu K, Liu HY, Yin YD, Gao CB (2014) Unconventional route to encapsulated ultrasmall gold nanoparticles for high-temperature catalysis. ACS Nano 8(7):7297–7304CrossRefGoogle Scholar
  31. 31.
    Mubeen S, Lee J, Liu DY, Stucky GD, Moskovits M (2015) Panchromatic photoproduction of H-2 with surface plasmons. Nano Lett 15(3):2132–2136CrossRefGoogle Scholar
  32. 32.
    Ranasingha OK, Wang CJ, Ohodnicki PR, Lekse JW, Lewis JP, Matranga C (2015) Synthesis, characterization, and photocatalytic activity of Au-Zno nanopyramids. J Mater Chem A 3(29):15141–15147CrossRefGoogle Scholar
  33. 33.
    Gao HW, Liu C, Jeong HE, Yang PD (2012) Plasmon-enhanced photocatalytic activity of iron oxide on gold nanopillars. ACS Nano 6(1):234–240CrossRefGoogle Scholar
  34. 34.
    Liu ZW, Hou WB, Pavaskar P, Aykol M, Cronin SB (2011) Plasmon resonant enhancement of photocatalytic water splitting under visible illumination. Nano Lett 11(3):1111–1116CrossRefGoogle Scholar
  35. 35.
    Hou Y, Zuo F, Dagg A, Feng PY (2013) A Three-dimensional branched cobalt-doped alpha-Fe2O3 nanorod/MgFe2O4 heterojunction array as a flexible photoanode for efficient photoelectrochemical water oxidation. Angew Chem Int Ed 52(4):1248–1252CrossRefGoogle Scholar
  36. 36.
    Zhao J, Pinchuk AO, Mcmahon JM, Li SZ, Ausman LK, Atkinson AL, Schatz GC (2008) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Chem Res 41(12):1710–1720CrossRefGoogle Scholar
  37. 37.
    Xu DD, Fu ZW, Wang DJ, Lin YH, Sun YJ, Meng DD, Xie TF (2015) A Ni(Oh)(2)-modified Ti-doped alpha-Fe2O3 photoanode for improved photoelectrochemical oxidation of urea: the role of Ni(Oh)(2) as a Co catalyst. Phys Chem Chem Phys 17(37):23924–23930CrossRefGoogle Scholar
  38. 38.
    Bouatra S, Aziat F, Mandal R, Guo AC, Wilson MR, Knox C, Bjorndahl TC, Krishnamurthy R, Saleem F, Liu P (2013) The human urine metabolome. PLoS ONE 8(9):e73076CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Walker Department of Mechanical Engineering, Materials Science and Engineering Program, Texas Materials InstituteThe University of Texas at AustinAustinUSA

Personalised recommendations