Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 11, pp 1069–1077 | Cite as

One-pot synthesis of a CoS-AC electrode in a redox electrolyte for high-performance supercapacitors

  • Tongkuan Xu
  • Zhixin Wang
  • Guoxiang WangEmail author
  • Lu Lu
  • Sa Liu
  • Shiping Gao
  • Hongfeng Xu
  • Zhihui YuEmail author
Research Article
  • 93 Downloads
Part of the following topical collections:
  1. Capacitors

Abstract

Due to their unique physical and chemical properties, nanostructured metal sulfide materials have shown excellent electrochemical performance. Among them, the natural semiconductor cobalt disulfide (CoS) is a promising electrode material for supercapacitors owing to its two-dimensional layered structure and fast carrier transmission. However, the curling of the CoS layers and the structural stability of CoS materials should be improved. In this context, we developed a facile solvothermal method to fabricate CoS-AC composite to solve the inherent defects of individual materials. The AC both increased the electrical conductivity of the electrode and supported the active species, thus improving the stability of the composite during the charge–discharge processes. Furthermore, the addition of K3Fe(CN)6 to the electrolyte to form a redox electrolyte largely enhanced the pseudocapacitance. The CoS-AC composite exhibited a high specific capacitance of 797.79 F g−1 at a high current density of 10 A g−1. The as-prepared CoS-AC//AC asymmetric supercapacitor device showed a superior cycling stability (77.53% maintained after 2000 cycles). The synergy between the electrode and the redox electrolyte was crucial for improving the supercapacitor performance.

Graphic abstract

The CoS-AC composites were simply synthesized using solvothermal approach with enhanced electrochemical properties.

Keywords

CoS-AC composite Solvothermal method Redox electrolyte Asymmetric supercapacitor 

Notes

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Nos. 21606033, 21376034, and 21506086) and the Natural Science Foundation of Liaoning Province (Grant No. 20170520427).

References

  1. 1.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828PubMedCrossRefGoogle Scholar
  2. 2.
    Bao L, Zhang J, Li X (2011) Flexible Zn2SnO4/MnO2 core/shell nanocable-carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett 11(3):1215–1220PubMedCrossRefGoogle Scholar
  3. 3.
    Conway BE (1999) Electrochemical supercapacitor scientific fundamentals and technological applications. Plenum Press 7:481–505Google Scholar
  4. 4.
    Winter M (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104(10):4245–4270PubMedCrossRefGoogle Scholar
  5. 5.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7(11):845–854PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Tang Z, Tang C, Gong H (2012) A high energy density asymmetric supercapacitor from nano-architectured Ni(OH)2/carbon nanotube electrodes. Adv Funct Mater 22(6):1272–1278CrossRefGoogle Scholar
  7. 7.
    Wang L, Wei T, Sheng L, Jang L, Wu X, Zhou Q, Yuan B, Yue J, Liu Z, Fan Z (2016) Brick-and-mortar” sandwiched porous carbon building constructed by metal-organic framework and graphene: ultrafast charge/discharge rate up to 2 V s−1 for supercapacitors. Nano Energy 30:84–92CrossRefGoogle Scholar
  8. 8.
    Shen J, Ji J, Dong P, Baines R, Zhang Z, Ajayan PM, Ye M (2016) Novel FeNi2S4/TMD-based ternary composites for supercapacitor applications. J Mater Chem A 4:8844–8850CrossRefGoogle Scholar
  9. 9.
    Guo D, Luo Y, Yu X, Li Q, Wang T (2014) High performance NiMoO4 nanowires supported on carbon cloth as advanced electrodes for symmetric supercapacitors. NanoEnergy 8:174–182Google Scholar
  10. 10.
    Conway BE, Pell WG (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electrochem 7:637–644CrossRefGoogle Scholar
  11. 11.
    Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730CrossRefGoogle Scholar
  12. 12.
    Sun W, Zheng R, Chen X (2010) Symmetric redox supercapacitor based on micro-fabrication with three-dimensional polypyrrole electrodes. J Power Sources 195:7120–7125CrossRefGoogle Scholar
  13. 13.
    Wan H, Ji X, Jiang J, Yu J, Li L, Zhang L, Bie S, Chen H, Ruan Y (2013) Hydrothermal synthesis of cobalt sulfide nanotubes: the size control and its application in supercapacitors. J Power Sources 243:396–402CrossRefGoogle Scholar
  14. 14.
    Peng S, Li L, Tan H, Cai R, Shi W, Li C, Mhaisalkar SG, Srinivasan M, Ramakrishna S, Yan Q (2014) MS2 (M = Co and Ni) hollow spheres with tunable interiors for high-performance supercapacitors and photovoltaics. Adv Funct Mater 24(15):2155–2162CrossRefGoogle Scholar
  15. 15.
    Rakhi RB, Alhebshi NA, Anjum DH, Alshareef HN (2014) Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors. J Mater Chem A 2:16190–16198CrossRefGoogle Scholar
  16. 16.
    Wang Q, Jiao L, Du H, Yang J, Huan Q, Peng W, Si P, Wang Y, Yuan H (2011) Facile synthesis and superior supercapacitor performances of three-dimensional cobalt sulfidehierarchitectures. CrystComm 13:6960–6963Google Scholar
  17. 17.
    Pu J, Wang Z, Wu K, Yu N, Sheng E (2014) Co9S8 nanotube arrays supported on nickel foam for high-performance supercapacitors. Phys Chem Phys 16:785–791CrossRefGoogle Scholar
  18. 18.
    Lin J, Chou S (2013) Cathodic deposition of interlaced nanosheet-like cobalt sulfide films for high-performance supercapacitors. RSC Adv 3:2043–2048CrossRefGoogle Scholar
  19. 19.
    Yang Z, Chen C, Chang H (2011) Supercapacitors incorporating hollow cobalt sulfide hexagonal nanosheets. J Power Sources 196:7874–7877CrossRefGoogle Scholar
  20. 20.
    Wang Q, Jiao L, Du H, Si Y, Wang Y, Yuan H (2012) Co3S4 hollow nanospheres grown on graphene as advanced electrode materials for supercapacitors. J Mater Chem 22:21387–21391CrossRefGoogle Scholar
  21. 21.
    Wang Q, Jiao L, Han Y, Du H, Peng W, Huan Q, Song D, Si Y, Wang Y, Yuan H (2011) CoS2 hollow spheres: fabrication and their application in Lithium-ion batteries. J Phys Chem C 115:8300–8304CrossRefGoogle Scholar
  22. 22.
    Luo F, Li J, Yuan H, Xiao D (2014) Rapid synthesis of three-dimensional flower-like cobalt sulfidehierarchitectures by microwave assisted heating method for high-performance supercapacitors. Electrochim Acta 123:183–189CrossRefGoogle Scholar
  23. 23.
    Wang Q, Jiao L, Du H, Peng W, Han Y, Song D, Si Y, Wang Y, Yuan H (2011) Novel flower-like CoS hierarchitectures: one-pot synthesis and electrochemical properties. J Mater Chem 21:327–329CrossRefGoogle Scholar
  24. 24.
    Yuan C, Shen L, Zhang F, Lu X, Li D, Zhang X (2010) Interface-hydrothermal synthesis and electrochemical properties of CoSx nanodots/poly(sodium-4-styrene sulfonate) functionalized multi-walled carbon nanotubes nanocomposite. J Colloid Interf Sci 349:181–185CrossRefGoogle Scholar
  25. 25.
    Lin J, Tsai Y, Tai S, Lin Y, Wan C, Tung Y, Wu Y (2013) Pulse-reversal deposition of cobalt sulfide thin film as a counter electrode for dye-sensitized solar cells. J Electrochem Soc 160:46–52CrossRefGoogle Scholar
  26. 26.
    Wang Y, Tang J, Kong B, Jia D, Wang Y, An T, Zhang L, Zheng G (2015) Freestanding 3D graphene/cobalt sulfide composites for supercapacitors and hydrogen evolution reaction. RSC Adv 5:6886–6891CrossRefGoogle Scholar
  27. 27.
    Du X, Wang C, Chen M, Jiao Y, Wang J (2009) Electrochemical performances of nanoparticle Fe3O4/activated carbon supercapacitor using KOH electrolyte solution. J Phys Chem C113(6):2643–2646Google Scholar
  28. 28.
    Senthilkumar ST, Selvan RK, Melo JS (2013) Redox additive/active electrolytes: a novel approach to enhance the performance of supercapacitors. J Mater Chem A 1:12386–12394CrossRefGoogle Scholar
  29. 29.
    Sun X, Xu D, Hu W, Chen X (2017) Template synthesis of 2D carbon nanosheets: improving energydensity of supercapacitors by dual redox additives anthraquinone-2-sulfonic acid sodium and KI. ACS Sustain Chem Eng 5:5972–5981CrossRefGoogle Scholar
  30. 30.
    Beguin F, Presser V, Balducci A, Frackowiak E (2014) Carbons and electrolytes for advanced supercapacitors. Adv Mater 26:2219–2251PubMedCrossRefGoogle Scholar
  31. 31.
    Xu L, Lu Y (2015) One-step synthesis of a cobalt sulfide/reducedgraphene oxide composite used as an electrodematerial for supercapacitors. RSC Adv 5:67518–67523CrossRefGoogle Scholar
  32. 32.
    Zhou L, Zhang K, Sheng J, An Q, Tao Z, Kang Y-M, Chem J, Mai L (2017) Structural and chemical synergistic effect of CoS nanoparticles and porous carbon nanorods for high-performance sodium storage. Nano Energy 35:281–289CrossRefGoogle Scholar
  33. 33.
    Chen D, Yang Y, Luo Y, Fang C, Xiong J (2015) Growth of ultrathin mesoporous Ni-Mo oxide nanosheet arrays on Ni foam for high-performance supercapacitor electrodes. Electrochim Acta 176:1343–1351CrossRefGoogle Scholar
  34. 34.
    Mai L, Minhas-Khan A, Tian X, MulondaHerclue K, Zhao Y, Lin X, Xu X (2013) Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun 4:2923–2930PubMedCrossRefGoogle Scholar
  35. 35.
    Xu Q, Jiang D, Wang T, Meng S, Chen M (2016) Ag nanoparticle-decorated CoS nanosheet nanocomposites: a high-performance material for multifunctional applications in photocatalysis and supercapacitors. RSC Adv 6:55039–55045CrossRefGoogle Scholar
  36. 36.
    Xing Z, Chu Q, Ren X, Ge C, Qusti AH, Asiri AM, Ai-Youbi AO, Sun X (2014) Ni3S2 coated ZnO array for high-performance supercapacitors. J Power Sources 245:463–467CrossRefGoogle Scholar
  37. 37.
    Tuinstra F, Koenig JL (1970) Raman wpectrumof graphite. J Chem Phys 53:1126CrossRefGoogle Scholar
  38. 38.
    Qu P, Gong Z, Cheng H, Xiong W, Wu X, Pei P, Zhao R, Zeng Y, Zhu Z (2015) Nanoflower-like CoS-decorated 3D porous carbon skeleton derived from rose for a high performance nonenzymatic glucose sensor. RSC Adv 5:106661–106667CrossRefGoogle Scholar
  39. 39.
    Yang H, Zha J, Zhang P, Xiong P, Su L, Ye F (2016) Sphere-like CoS with nanostructures as peroxidase mimics for colorimetric determination of H2O2 and mercury ions. RSC Adv 6:66963–66970CrossRefGoogle Scholar
  40. 40.
    Chen C, Shih Z, Yang Z, Chang H (2012) Carbon nanotubes/cobalt sulfide composites as potential high-rate and high-efficiency supercapacitors. J Power Sources 215:43–47CrossRefGoogle Scholar
  41. 41.
    Meng X, Deng J, Zhu J, Bi H, Kan E, Wang X (2016) Cobalt sulfide/graphene composite hydrogel as electrode for high-performance pseudocapacitors. Sci Rep 6:21717PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rakhi RB, Nuha AA, Anjum DH, Alshareef HN (2014) Nanostructured cobalt sulfide-on-fiber with tunable morphology as electrodes for asymmetric hybrid supercapacitors. J Mater Chem A2:16190–16198CrossRefGoogle Scholar
  43. 43.
    Shi J, Li X, He G, Zhang L, Li M (2015) Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors. J Mater Chem A 3:20619–20626CrossRefGoogle Scholar
  44. 44.
    Hu C, Deng J, Xiao X, Zhan X, Huang K, Xiao N, Ju S (2015) Determination of dimetridazole using carbon paste electrode modified with aluminum doped surface molecularly imprinted siloxane. Electrochim Acta 158:298–305CrossRefGoogle Scholar
  45. 45.
    Yan J, Fan Z, Sun W, Ning G, Wei T, Zhang Q, Zhang R, Zhi L, Wei F (2012) Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv Funct Mater 22:2632–2641CrossRefGoogle Scholar
  46. 46.
    Jiang D, Liang H, Liu Y, Zheng Y, Li C, Yang W, Barrow CJ, Liu J (2018) In situ generation of CoS1.097 nanoparticles on S/N co-doped graphene/carbonized foam for mechanically tough and flexible all solid-state supercapacitors. J Mater Chem A6:11966–11977CrossRefGoogle Scholar
  47. 47.
    Wang B, Wang Q, Xu B, Tliu T, Wang D, Zhao G (2013) The synergy effect on Li storage of LiFePO4 with activated carbon modifications. RSC Adv 3:20024–20033CrossRefGoogle Scholar
  48. 48.
    Portet C, Taberna PL, Simon P, Flahaut E, Laberty-Robert C (2005) High power density electrodes for Carbon supercapacitor applications. Electrochim Acta 50:4174–4181CrossRefGoogle Scholar
  49. 49.
    Wang S, Xiao Z, Zhai S, Wang H, Cai W, Qin L, Huang J, Zhao D, Li Z, An Q (2019) Construction of strawberry-like Ni3S2@Co9S8heteronanoparticle-embedded biomass-derived 3D N-doped hierarchical porous carbon for ultrahigh energy density supercapacitors. J Mater Chem A 7:17345–17356CrossRefGoogle Scholar
  50. 50.
    Chidembo AT, Ozoemena KI, Agboola BO, Gupta V, Wildgoose GG, Compton RG (2010) Nickel(II) tetra-aminophthalocyanine modified MWCNTsas potential nanocomposite materials for the development of supercapacitors. Energy Environ Sci 3:228–236CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.School of Light Industry & Chemical EngineeringDalian Polytechnic UniversityDalianPeople’s Republic of China
  2. 2.Liaoning Provincial Key Laboratory of New Energy BatteryDalian Jiaotong UniversityDalianPeople’s Republic of China
  3. 3.School of Chemistry and Materials ScienceJiangsu Normal UniversityXuzhouPeople’s Republic of China

Personalised recommendations