Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 9, pp 917–928 | Cite as

Electroreduction of carbon dioxide to formate at high current densities using tin and tin oxide gas diffusion electrodes

  • Sujat Sen
  • Steven M. Brown
  • McLain Leonard
  • Fikile R. BrushettEmail author
Research Article
  • 452 Downloads
Part of the following topical collections:
  1. Electrosynthesis

Abstract

We investigate tin (Sn) and tin oxide (SnO2) nanoparticle catalysts deposited on gas diffusion layers for the electrochemical reduction of carbon dioxide (CO2) to formate. The performance and durability of these electrodes was evaluated in a gas-fed electrolysis cell with a flowing liquid electrolyte stream and an integrated reference electrode. The SnO2 electrodes achieved peak current densities of 385 ± 19 mA cm−2 while the Sn electrodes achieved peak current densities of 214 ± 6 mA cm−2, both at a formate selectivity > 70%. The associated peak formate production rates of 7.4 ± 0.6 mmol m−2 s−1 (Sn) and 14.9 ± 0.8 mmol m−2 s−1 (SnO2) were demonstrated for a 1-h electrolysis and compare favorably to prior literature. Post-test analyses reveal chemical and physical changes to both cathodes during electrolysis including oxide reduction at applied potentials more negative than − 0.6 V versus RHE, nanoparticle aggregation, and catalyst layer erosion. Understanding and mitigating these decay processes is key to extending electrode lifetime without sacrificing formate generation rates or process efficiency.

Graphic abstract

Keywords

Electrochemical reduction Carbon dioxide Gas diffusion electrode Flow electrolyzer Formate production Tin oxide 

Notes

Acknowledgements

This work availed the MRSEC Shared Experimental Facilities at MIT, supported by the National Science Foundation under award number DMR-1419807. The authors acknowledge the financial support of DOE SBIR Contract #DE-SC0015173. The authors thank Michael Orella of the Brushett Research Group for insightful discussions and assistance with experiments.

Supplementary material

10800_2019_1332_MOESM1_ESM.docx (6.7 mb)
Supplementary material 1 (DOCX 6873 kb)

References

  1. 1.
    Schiffer ZJ, Manthiram K (2017) Electrification and decarbonization of the chemical industry. Joule 1(1):10–14CrossRefGoogle Scholar
  2. 2.
    Chen A, Lin B-L (2018) A simple framework for quantifying electrochemical CO2 fixation. Joule 2(4):594–606CrossRefGoogle Scholar
  3. 3.
    Lechtenböhmer S et al (2016) Decarbonising the energy intensive basic materials industry through electrification—implications for future EU electricity demand. Energy 115:1623–1631CrossRefGoogle Scholar
  4. 4.
    Centi G, Quadrelli EA, Perathoner S (2013) Catalysis for CO2 conversion: a key technology for rapid introduction of renewable energy in the value chain of chemical industries. Energy Environ Sci 6(6):1711–1731CrossRefGoogle Scholar
  5. 5.
    Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluids 132:3–16CrossRefGoogle Scholar
  6. 6.
    Zhang W et al (2018) Progress and perspective of electrocatalytic CO2 reduction for renewable carbonaceous fuels and chemicals. Adv Sci 5(1):1700275CrossRefGoogle Scholar
  7. 7.
    Lu Q, Jiao F (2016) Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29:439–456CrossRefGoogle Scholar
  8. 8.
    Kumar B et al (2016) New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction. Catal Today 270:19–30CrossRefGoogle Scholar
  9. 9.
    Dutta A et al (2018) Beyond copper in CO2 electrolysis: effective hydrocarbon production on silver nano-foam catalysts. ACS Catal 8(9):8357–8368CrossRefGoogle Scholar
  10. 10.
    Dutta A et al (2017) Electrochemical CO2 conversion using skeleton (sponge) type of Cu catalysts. ACS Catal 7(8):5431–5437CrossRefGoogle Scholar
  11. 11.
    Wang Q, Dong H, Yu H (2014) Development of rolling tin gas diffusion electrode for carbon dioxide electrochemical reduction to produce formate in aqueous electrolyte. J Power Sources 271:278–284CrossRefGoogle Scholar
  12. 12.
    Wang Q et al (2015) Enhanced performance of gas diffusion electrode for electrochemical reduction of carbon dioxide to formate by adding polytetrafluoroethylene into catalyst layer. J Power Sources 279:1–5CrossRefGoogle Scholar
  13. 13.
    Pérez-Rodríguez S et al (2016) Electrochemical reactors for CO2 reduction: from acid media to gas phase. Int J Hydrog Energy 41(43):19756–19765CrossRefGoogle Scholar
  14. 14.
    Lu X et al (2017) A high performance dual electrolyte microfluidic reactor for the utilization of CO2. Appl Energy 194:549–559CrossRefGoogle Scholar
  15. 15.
    Merino-Garcia I et al (2016) Electrochemical membrane reactors for the utilisation of carbon dioxide. Chem Eng J 305:104–120CrossRefGoogle Scholar
  16. 16.
    Hori Y et al (1994) Electrocatalytic process of CO selectivity in electrochemical reduction of CO2 at metal electrodes in aqueous media. Electrochim Acta 39(11):1833–1839CrossRefGoogle Scholar
  17. 17.
    Wang Y, Niu C, Wang D (2018) Metallic nanocatalysts for electrochemical CO2 reduction in aqueous solutions. J Colloid Interface Sci 527:95–106PubMedCrossRefGoogle Scholar
  18. 18.
    Agarwal AS et al (2011) The electrochemical reduction of carbon dioxide to formate/formic acid: engineering and economic feasibility. Chemsuschem 4(9):1301–1310PubMedCrossRefGoogle Scholar
  19. 19.
    Garron A, Epron F (2005) Use of formic acid as reducing agent for application in catalytic reduction of nitrate in water. Water Res 39(13):3073–3081PubMedCrossRefGoogle Scholar
  20. 20.
    Muck RE et al (2018) Silage review: recent advances and future uses of silage additives. J Dairy Sci 101(5):3980–4000PubMedCrossRefGoogle Scholar
  21. 21.
    Chen Y, Kanan MW (2012) Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J Am Chem Soc 134(4):1986–1989PubMedCrossRefGoogle Scholar
  22. 22.
    Wu J et al (2012) Electrochemical reduction of carbon dioxide I. Effects of the electrolyte on the selectivity and activity with Sn electrode. J Electrochem Soc 159(7):F353–F359CrossRefGoogle Scholar
  23. 23.
    Wu J et al (2014) Electrochemical reduction of carbon dioxide III. The role of oxide layer thickness on the performance of Sn electrode in a full electrochemical cell. J Mater Chem A 2(6):1647–1651CrossRefGoogle Scholar
  24. 24.
    Wu J et al (2013) Electrochemical reduction of carbon dioxide: II. Design, assembly, and performance of low temperature full electrochemical cells. J Electrochem Soc 160(9):F953–F957CrossRefGoogle Scholar
  25. 25.
    Wu J et al (2014) Electrochemical reduction of carbon dioxide: IV dependence of the Faradaic efficiency and current density on the microstructure and thickness of tin electrode. J Power Sources 258:189–194CrossRefGoogle Scholar
  26. 26.
    Zhang S, Kang P, Meyer TJ (2014) Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate. J Am Chem Soc 136(5):1734–1737PubMedCrossRefGoogle Scholar
  27. 27.
    Bashir S et al (2016) Electrocatalytic reduction of carbon dioxide on SnO2/MWCNT in aqueous electrolyte solution. J CO2 Utilization 16:346–353CrossRefGoogle Scholar
  28. 28.
    Fu Y et al (2016) Electrochemical CO2 reduction to formic acid on crystalline SnO2 nanosphere catalyst with high selectivity and stability. Chin J Catal 37(7):1081–1088CrossRefGoogle Scholar
  29. 29.
    Kumar B et al (2017) Reduced SnO2 porous nanowires with a high density of grain boundaries as catalysts for efficient electrochemical CO2-into-HCOOH conversion. Angew Chem Int Ed 56(13):3645–3649CrossRefGoogle Scholar
  30. 30.
    Li F et al (2017) Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angew Chem Int Ed 56(2):505–509CrossRefGoogle Scholar
  31. 31.
    Lee S et al (2015) Alkaline CO2 electrolysis toward selective and continuous HCOO– production over SnO2 nanocatalysts. J Phys Chem C 119(9):4884–4890CrossRefGoogle Scholar
  32. 32.
    Eilert A et al (2017) Subsurface oxygen in oxide-derived copper electrocatalysts for carbon dioxide reduction. J Phys Chem Lett 8(1):285–290PubMedCrossRefGoogle Scholar
  33. 33.
    Pletcher D (2015) The cathodic reduction of carbon dioxide—what can it realistically achieve? A mini review. Electrochem Commun 61:97–101CrossRefGoogle Scholar
  34. 34.
    Paidar M, Fateev V, Bouzek K (2016) Membrane electrolysis—history, current status and perspective. Electrochim Acta 209:737–756CrossRefGoogle Scholar
  35. 35.
    Wiebe R, Gaddy VL (1940) The solubility of carbon dioxide in water at various temperatures from 12 to 40° and at pressures to 500 atmospheres. Critical Phenomena*. J Am Chem Soc 62(4):815–817CrossRefGoogle Scholar
  36. 36.
    John R. Rumble, ed., CRC Handbook of Chemistry and Physics, 99th Edition (Internet Version 2018), CRC Press/Taylor & Francis, Boca RatonGoogle Scholar
  37. 37.
    Proietto F et al (2018) Electrochemical conversion of CO2 to HCOOH at tin cathode in a pressurized undivided filter-press cell. Electrochim Acta 277:30–40CrossRefGoogle Scholar
  38. 38.
    Scialdone O et al (2016) Electrochemical reduction of carbon dioxide to formic acid at a tin cathode in divided and undivided cells: effect of carbon dioxide pressure and other operating parameters. Electrochim Acta 199:332–341CrossRefGoogle Scholar
  39. 39.
    Hashiba H et al (2016) Systematic analysis of electrochemical CO2 reduction with various reaction parameters using combinatorial reactors. ACS Comb Sci 18(4):203–208PubMedCrossRefGoogle Scholar
  40. 40.
    Endrődi B et al (2017) Continuous-flow electroreduction of carbon dioxide. Prog Energy Combust Sci 62:133–154CrossRefGoogle Scholar
  41. 41.
    Delacourt C et al (2008) Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J Electrochem Soc 155(1):B42–B49CrossRefGoogle Scholar
  42. 42.
    Jhong H-RM, Brushett FR, Kenis PJA (2013) The effects of catalyst layer deposition methodology on electrode performance. Adv Energy Mater 3(5):589–599CrossRefGoogle Scholar
  43. 43.
    Ma S et al (2016) One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J Power Sources 301:219–228CrossRefGoogle Scholar
  44. 44.
    Del Castillo A et al (2015) Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: effect of metal loading and particle size. Appl Energy 157:165–173CrossRefGoogle Scholar
  45. 45.
    Kopljar D et al (2014) Electrochemical reduction of CO2 to formate at high current density using gas diffusion electrodes. J Appl Electrochem 44(10):1107–1116CrossRefGoogle Scholar
  46. 46.
    Kopljar D, Wagner N, Klemm E (2016) Transferring electrochemical CO2 reduction from semi-batch into continuous operation mode using gas diffusion electrodes. Chem Eng Technol 39(11):2042–2050CrossRefGoogle Scholar
  47. 47.
    Yang H et al (2017) Electrochemical conversion of CO2 to formic acid utilizing Sustainion™ membranes. J CO2 Utilization 20:208–217CrossRefGoogle Scholar
  48. 48.
    Kutz RB et al (2017) Sustainion imidazolium-functionalized polymers for carbon dioxide electrolysis. Energy Technol 5(6):929–936CrossRefGoogle Scholar
  49. 49.
    Sen S et al (2016) Pulsed electrodeposition of tin electrocatalysts onto gas diffusion layers for carbon dioxide reduction to formate. MRS Adv 2(8):451–458CrossRefGoogle Scholar
  50. 50.
    Irtem E et al (2016) Low-energy formate production from CO2 electroreduction using electrodeposited tin on GDE. J Mater Chem A 4(35):13582–13588CrossRefGoogle Scholar
  51. 51.
    Del Castillo A, Alvarez-Guerra M, Irabien A (2014) Continuous electroreduction of CO2 to formate using Sn gas diffusion electrodes. AIChE J 60(10):3557–3564CrossRefGoogle Scholar
  52. 52.
    Del Castillo A et al (2017) Sn nanoparticles on gas diffusion electrodes: synthesis, characterization and use for continuous CO2 electroreduction to formate. J CO2 Utilization 18:222–228CrossRefGoogle Scholar
  53. 53.
    Milshtein JD et al (2016) High current density, long duration cycling of soluble organic active species for non-aqueous redox flow batteries. Energy Environ Sci 9(11):3531–3543CrossRefGoogle Scholar
  54. 54.
    Rheinländer PJ et al (2014) Kinetics of the hydrogen oxidation/evolution reaction on polycrystalline platinum in alkaline electrolyte reaction order with respect to hydrogen pressure. J Electrochem Soc 161(14):F1448–F1457CrossRefGoogle Scholar
  55. 55.
    Sen S, Liu D, Palmore GTR (2014) Electrochemical reduction of CO2 at copper nanofoams. ACS Catal 4(9):3091–3095CrossRefGoogle Scholar
  56. 56.
    Li H, Oloman C (2005) The electro-reduction of carbon dioxide in a continuous reactor. J Appl Electrochem 35(10):955–965CrossRefGoogle Scholar
  57. 57.
    Li H, Oloman C (2006) Development of a continuous reactor for the electro-reduction of carbon dioxideto formate – part 1: process variables. J Appl Electrochem 36(10):1105CrossRefGoogle Scholar
  58. 58.
    Li H, Oloman C (2007) Development of a continuous reactor for the electro-reduction of carbon dioxide to formate—part 2: pcale-up. J Appl Electrochem 37(10):1107–1117CrossRefGoogle Scholar
  59. 59.
    Prakash GKS, Viva FA, Olah GA (2013) Electrochemical reduction of CO2 over Sn-Nafion® coated electrode for a fuel-cell-like device. J Power Sources 223:68–73CrossRefGoogle Scholar
  60. 60.
    Kapusta SD, Hackerman N (1980) Anodic passivation of tin in slightly alkaline solutions. Electrochim Acta 25(12):1625–1639CrossRefGoogle Scholar
  61. 61.
    Saravanan K et al (2017) Computational investigation of CO2 electroreduction on tin oxide and predictions of Ti, V, Nb and Zr dopants for improved catalysis. J Mater Chem A 5:11756–11763CrossRefGoogle Scholar
  62. 62.
    Lee CW et al (2017) Reaction mechanisms of the electrochemical conversion of carbon dioxide to formic acid on tin oxide electrodes. ChemElectroChem 4(9):2130–2136CrossRefGoogle Scholar
  63. 63.
    Cui C et al (2016) Promotional effect of surface hydroxyls on electrochemical reduction of CO2 over SnOx/Sn electrode. J Catal 343:257–265CrossRefGoogle Scholar
  64. 64.
    Benck JD et al (2014) Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte. PLoS ONE 9(10):e107942PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Anantharaj S et al (2018) Precision and correctness in the evaluation of electrocatalytic water splitting: revisiting activity parameters with a critical assessment. Energy Environ Sci 11:744–771CrossRefGoogle Scholar
  66. 66.
    Greenblatt JB et al (2018) The technical and energetic challenges of separating (photo)electrochemical carbon dioxide reduction products. Joule 2(3):381–420CrossRefGoogle Scholar
  67. 67.
    Brushett FR et al (2016) Development of novel tin nanostructures using pulse plating methods for the electroreduction of carbon dioxide to formic acid. Meeting Abstracts, MA2016-02(40), p 3012Google Scholar
  68. 68.
    Masuda Y, Ohji T, Kato K (2012) Tin oxide nanosheet assembly for hydrophobic/hydrophilic coating and cancer sensing. ACS Appl Mater Interfaces 4(3):1666–1674PubMedCrossRefGoogle Scholar
  69. 69.
    Won DH et al (2015) Rational design of a hierarchical tin dendrite electrode for efficient electrochemical reduction of CO2. Chemsuschem 8(18):3092–3098CrossRefGoogle Scholar
  70. 70.
    Liu Z et al (2016) Electrochemical generation of syngas from water and carbon dioxide at industrially important rates. J CO2 Utilization 15:50–56CrossRefGoogle Scholar
  71. 71.
    Verma S et al (2016) A gross-margin model for defining technoeconomic benchmarks in the electroreduction of CO2. Chemsuschem 9(15):1972–1979PubMedCrossRefGoogle Scholar
  72. 72.
    Jouny M, Luc W, Jiao F (2018) General techno-economic analysis of CO2 electrolysis systems. Ind Eng Chem Res 57(6):2165–2177CrossRefGoogle Scholar
  73. 73.
    Manthiram K, Beberwyck BJ, Alivisatos AP (2014) Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst. J Am Chem Soc 136(38):13319–13325PubMedCrossRefGoogle Scholar
  74. 74.
    Wu J, Sun S-G, Zhou X-D (2016) Origin of the performance degradation and implementation of stable tin electrodes for the conversion of CO2 to fuels. Nano Energy 27:225–229CrossRefGoogle Scholar
  75. 75.
    Anawati et al (2014) Degradation and deactivation of Sn catalyst used for CO2 reduction as function of overpotential. Electrochim Acta 133:188–196CrossRefGoogle Scholar
  76. 76.
    Salzberg HW, Mies F (1958) Cathodic disintegration of tin. J Electrochem Soc 105(2):64–66CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry & BiochemistryUniversity of Wisconsin-LacrosseLacrosseUSA
  2. 2.Department of Chemical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations