Journal of Applied Electrochemistry

, Volume 49, Issue 8, pp 823–837 | Cite as

Corrosion protection of bronze using 2,5-dimercapto-1,3,4-thiadiazole as organic inhibitor: spectroscopic and electrochemical investigations

  • W. Qafsaoui
  • A. Et TaouilEmail author
  • M. W. Kendig
  • O. Heintz
  • H. Cachet
  • S. Joiret
  • H. Takenouti
Research Article
Part of the following topical collections:
  1. Corrosion


Effect of 2,5-dimercapto-1,3,4-thiadiazole (DMTD) concentration on the electrochemical behaviour of bronze was studied in 30 g L−1 sodium chloride (NaCl) by means of surface analyses and electrochemical techniques. Scanning electron microscopy (SEM) was used to observe surface morphology. Raman micro-spectroscopy was carried out to study chemical structure of deposited layers. X-ray photoelectron spectroscopy enabled elemental characterization as well as molecular structure investigation. Finally, electrochemical polarization and impedance permitted a thorough study of corrosion protection behaviour reached through the presence of DMTD-based organic layers on the surface. Above 1 mM, a fast adsorption of DMTD on copper (Cu) and lead (Pb) allows a thin and blocking film to be formed on bronze surface. DMTD prevents oxide formation at high concentrations, and the surface film is mainly composed of CuI-DMTD and CuII-DMTD complexes as evidenced by spectroscopic techniques, with a bidentate adsorption at 1 mM and monodentate adsorption at 10 mM.

Graphic abstract


Corrosion protection Bronze 2,5-Dimercapto-1,3,4-thiadiazole Electrochemical impedance spectroscopy Raman spectroscopy Neutral inhibition 



The University of El Jadida who authorized Pr. W. Qafsaoui to attend the LISE before the end of University year is gratefully acknowledged. The authors thank F. Pillier for SEM analyses.


  1. 1.
    Shreir LL, Jarman RA, Burstein GT (1994) Copper and Copper Alloys. Corrosion, metal/environment reactions, vol 1. Butterworth-Heinmann, London, pp 38–75Google Scholar
  2. 2.
    Thompson DH (1968) Atmospheric corrosion of copper alloys. In: Metal corrosion in the atmosphere, ASTM STP 435. American Society of Testing and Materials, pp 129-140Google Scholar
  3. 3.
    Muller J, Laïk B, Guillot I (2013) α-CuSn bronzes in sulphate medium: influence of the tin content on corrosion processes. Corros Sci 77:46–51CrossRefGoogle Scholar
  4. 4.
    De Oliveira FJR, Lago DCB, Senna LF, De Miranda LRM, D’Elia E (2009) Study of patina formation on bronze specimens. Mater Chem Phys 115:761–770CrossRefGoogle Scholar
  5. 5.
    Otmačić Ćurković H, Kosec T, Marušić K, Legat A (2012) An electrochemical impedance study of the corrosion protection of artificially formed patinas on recent bronze. Electrochim Acta 83:28–39CrossRefGoogle Scholar
  6. 6.
    Muresan L, Varvara S, Stupnišek-Lisac E, Otmačić H, Marušić K, Horvat-Kurbegović S, Robbiola L, Rahmouni K, Takenouti H (2007) Protection of bronze covered with patina by innoxious organic substances. Electrochim Acta 52:7770–7779CrossRefGoogle Scholar
  7. 7.
    Marušić K, Otmačić-Ćurković H, Takenouti H (2011) Inhibiting effect of 4-methyl-1-p-tolylimidazole to the corrosion of bronze patinated in sulphate medium. Electrochim Acta 56:7491–7502CrossRefGoogle Scholar
  8. 8.
    Robbiola L, Blengino JM, Fiaud C (1998) Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corros Sci 40:2083–2111CrossRefGoogle Scholar
  9. 9.
    Cano E, Lafuente D (2013) Corrosion inhibitors for the preservation of metallic heritage artefacts. In: Dillmann P, Watkinson D, Angelini E, Adriaens A (eds) European federation of corrosion (EFC) series, corrosion and conservation of cultural heritage metallic artefacts. Woodhead Publishing, CambridgeGoogle Scholar
  10. 10.
    Walker R (2000) Aqueous corrosion of tin-bronze and inhibition by benzotriazole. Corrosion 56:1211–1219CrossRefGoogle Scholar
  11. 11.
    Taylor RJ, MacLeod ID (1985) Corrosion of bronzes on shipwrecks. Corrosion 41:100–104CrossRefGoogle Scholar
  12. 12.
    Balbo A, Chiavari C, Martini C, Monticelli C (2012) Effectiveness of corrosion inhibitor films for the conservation of bronzes and gilded bronzes. Corros Sci 59:204–212CrossRefGoogle Scholar
  13. 13.
    Dermaj A, Hajjaji N, Joiret S, Rahmouni K, Srhiri A, Takenouti H, Vivier V (2007) Electrochemical and spectroscopic evidences of corrosion inhibition of bronze by a triazole derivative. Electrochim Acta 52:4654–4662CrossRefGoogle Scholar
  14. 14.
    Allam NK, Nazeer AA, Ashour EA (2009) A review of the effects of benzotriazole on the corrosion of copper and copper alloys in clean and polluted environments. J Appl Electrochem 39:961–969CrossRefGoogle Scholar
  15. 15.
    Rotarua I, Varvara S, Gaina L, Muresan LM (2014) Antibacterial drugs as corrosion inhibitors for bronze surfaces in acidic solutions. Appl Surf Sci 321:188–196CrossRefGoogle Scholar
  16. 16.
    Qafsaoui W, Kendig M, Perrot H, Takenouti H (2013) Coupling of electrochemical techniques to study copper corrosion inhibition in 0.5 mol L−1NaCl by 1-pyrrolidine dithiocarbamate. Electrochim Acta 87:348–360CrossRefGoogle Scholar
  17. 17.
    Qafsaoui W, Kendig MW, Perrot H, Takenouti H (2015) Effect of 1-pyrrolidine dithiocarbamate on the galvanic coupling resistance of intermetallics—aluminum matrix during corrosion of AA 2024-T3 in a dilute NaCl. Corros Sci 92:245–255CrossRefGoogle Scholar
  18. 18.
    Qafsaoui W, Et Taouil A, Kendig M, Cachet H, Joiret S, Perrot H, Takenouti H (2018) Coupling of electrochemical, electrogravimetric and surface analysis techniques to study dithiocarbamate/bronze interactions in chloride media. Corros Sci 130:190–202CrossRefGoogle Scholar
  19. 19.
    Qin TT, Li J, Luo HQ, Li M, Li NB (2011) Corrosion inhibition of copper by 2,5-dimercapto-1,3,4-thiadiazole monolayer in acidic solution. Corros Sci 53:1072–1078CrossRefGoogle Scholar
  20. 20.
    Yadav M, Sharma D (2010) Inhibition of corrosion of copper by 2,5-dimercapto-1,3,4-thiadiazole in 3.5% NaCl solution. Indian J Chem Technol 17:95–101Google Scholar
  21. 21.
    Kendig M, Hon M (2005) A Hydrotalcite-Like Pigment Containing an Organic Anion Corrosion Inhibitor. Electrochem Solid St 8:B10–B11CrossRefGoogle Scholar
  22. 22.
    Kendig M, Hon M, Sinko J (2006) Inhibition of oxygen reduction on copper in neutral sodium chloride corrosion inhibition—non ferrous metals. ECS Trans 1:119–129CrossRefGoogle Scholar
  23. 23.
    Kendig M, Hon M (2004) Environmentally triggered release of oxygen-reduction inhibitors from inherently conducting polymers. Corrosion 60:1024–1030CrossRefGoogle Scholar
  24. 24.
    Kendig M, Yan C (2004) Critical concentrations for selected oxygen reduction reaction inhibitors. J Electrochem Soc 151:B679–B682CrossRefGoogle Scholar
  25. 25.
    Kendig M, Kinlen P (2007) Demonstration of galvanically stimulated release of a corrosion inhibitor: basis for “smart” corrosion inhibiting materials corrosion, passivation, and anodic films. J Electrochem Soc 154:C195–C201CrossRefGoogle Scholar
  26. 26.
    Bernard MC, Joiret S (2009) Understanding corrosion of ancient metals for the conservation of cultural heritage. Electrochim Acta 54:5199–5205CrossRefGoogle Scholar
  27. 27.
    Joy VT, Srinivasan TKK (2001) Ft-SERS studies on 1,3-thiazolidine-2-thione-2,5-dimercapto-1,3,4-thiadiazole and 2-thiouracil adsorbed on chemically deposited silver films. J Raman Spectrosc 32:785–793CrossRefGoogle Scholar
  28. 28.
    Pope JM, Sato T, Shoji E, Buttry DA, Sotomura T, Oyama N (1997) Spectroscopic identification of 2,5-dimercapto-1,3,4-thiadiazole and its lithium salt and dimer forms. J Power Sources 68:739–742CrossRefGoogle Scholar
  29. 29.
    Maiti N, Chadha R, Das A, Kapoor S (2016) Surface selective bending of 2,5-dimercapto-1,3,4-thiadiazole (DMTD) on silver and gold nanoparticles: a Raman and DFT study. Roy Soc Chem Adv 6:62529–62539Google Scholar
  30. 30.
    Edwards HGM, Johnson AF, Lawson EE (1995) Structural determination of substituted mercaptothiadiazoles using FT-Raman and FT-IR spectroscopy. J Mol Struct 351:51–63CrossRefGoogle Scholar
  31. 31.
    Matsumoto F, Ozaki M, Inatomi Y, Paulson SC, Oyama N (1999) Studies on the adsorption behavior of 2,5-dimercapto-1,3,4-thiadiazole and 2-Mercapto-5-methyl-1,3,4-thiadiazole at gold and copper electrode surfaces. Langmuir 15:857–865CrossRefGoogle Scholar
  32. 32.
    Huang L, Shen J, Ren J, Meng Q, Yu T (2001) The adsorption of 2,5-Dimercapto-1,3,4-thiadiazole (DMTD) on copper surface and its binding behavior. Chin Sci Bull 46:1–4Google Scholar
  33. 33.
    Huang L, Tang F, Hu B, Shen J, Yu T, Meng Q (2001) Chemical reactions of 2,5-dimercapto-1,3,4-thiadiazole (DMTD) with metallic copper, silver and mercury. J Phys Chem B 105:7984–7989CrossRefGoogle Scholar
  34. 34.
    Finšgar M (2013) 2-Mercaptobenzimidazole as a copper corrosion inhibitor: part II. Surface analysis using X-ray photoelectron spectroscopy. Corros Sci 72:90–98CrossRefGoogle Scholar
  35. 35.
    Finšgar M, Kovač J, Milošev I (2010) Surface analysis of 1-hydroxybenzotriazole and benzoltriazole adsorbed on Cu by X-ray photoelectron spectroscopy. J Electrochem Soc 157:C52–C60CrossRefGoogle Scholar
  36. 36.
    Finšgar M (2013) EQCM and XPS analysis of 1,2,4-triazole and 3-amino-1,2,4-triazole as copper corrosion inhibitors in chloride solution. Corros Sci 77:350–359CrossRefGoogle Scholar
  37. 37.
    Finšgar M (2013) 2-Mercaptobenzimidazole as a copper corrosion inhibitor: part I. Long-term immersion, 3D-profilometry, and electrochemistry. Corros Sci 72:82–89CrossRefGoogle Scholar
  38. 38.
    Finšgar M, Kek Merl D (2014) 2-Mercaptobenzoxazole as a copper corrosion inhibitor in chloride solution: electrochemistry, 3D-profilometry, and XPS surface analysis. Corros Sci 80:82–95CrossRefGoogle Scholar
  39. 39.
    Laibinis PE, Whitesides GM, Allara DL, Tao YT, Parikh AN, Nuzzo RG (1991) Comparison of the structures and wetting properties of self-assembled monolayers on n-alkanethiols on the coinage metal surfaces, copper, silver and gold. J Am Chem Soc 113:7152–7167CrossRefGoogle Scholar
  40. 40.
    Qafsaoui W, Kendig MW, Joiret S, Perrot H, Takenouti H (2016) Ammonium pyrrolidine dithiocarbamate adsorption on copper surface in neutral chloride media. Corros Sci 106:96–107CrossRefGoogle Scholar
  41. 41.
    Naumkin AV, Kraut-Vass A, Gaarenstroom SW, Powell CJ (2003) NIST standard reference database 20, Version 4.1, <>
  42. 42.
    Muilenberg GE (ed) (1979) Handbook of X-ray photoelectron spectroscopy. Perkin-Elmer Corporation, Eden PrairieGoogle Scholar
  43. 43.
    Milošev I, Strehblow HH (2003) Electrochemical behaviour of Cu-xZn alloys in borate buffer solution at pH 9.2. J Electrochem Soc 150:B517–B524CrossRefGoogle Scholar
  44. 44.
    Squarcialupi MC, Bernardini GP, Faso V, Atrei A, Rovida G (2002) Characterisation by XPS of the corrosion patina formed on bronze surfaces. J Cultural Herit 3:199–204CrossRefGoogle Scholar
  45. 45.
    Galtayries A, Bonnelle JP (1995) XPS and ISS studies on the interaction of H2S with polycrystalline Cu, Cu2O and CuO surfaces. Surf Interface Anal 23:171–179CrossRefGoogle Scholar
  46. 46.
    Chawla SK, Sankarraman N, Payer JH (1992) Diagnostic spectra for XPS analysis of Cu–O–S–H compounds. J Electron Spectrosc 61:1–18CrossRefGoogle Scholar
  47. 47.
    Zucchi F, Frignani A, Grassi V, Trabanelli G, DalColle M (2007) The formation of a protective layer of 3-mercapto-propyl-trimethoxy-silane on copper. Corros Sci 49:1570–1583CrossRefGoogle Scholar
  48. 48.
    Deslouis C, Tribollet B, Mengoli G, Musiani MM (1988) Electrochemical behavior of copper in neutral aerated chloride solution. I. Steady-state investigation. J Appl Electrochem 18:374–383CrossRefGoogle Scholar
  49. 49.
    Lee HP, Nobe K (1986) Kinetics and mechanisms of Cu electrodissolution in chloride media. J Electrochem Soc 133:2035–2043CrossRefGoogle Scholar
  50. 50.
    Kear G, Barker BD, Walsh FC (2004) Electrochemical corrosion of unalloyed copper in chloride media-a critical review. Corros Sci 46:109–135CrossRefGoogle Scholar
  51. 51.
    Shaban A, Kálmán E, Telegdi J (1998) An investigation of copper corrosion inhibition in chloride solutions by benzo-hydroxamic acids. Electrochim Acta 43:159–163CrossRefGoogle Scholar
  52. 52.
    Souissi N, Sidot E, Bousselmi L, Triki E, Robbiola L (2007) Corrosion behaviour of Cu–10Sn bronze in aerated NaCl aqueous media – Electrochemical investigation. Corros Sci 49:3333–3347CrossRefGoogle Scholar
  53. 53.
    Qafsaoui W, Kendig MW, Perrot H, Takenouti H (2008) Corrosion Inhibition of copper by selected thiol compounds. ECS Trans 13:123–132CrossRefGoogle Scholar
  54. 54.
    Huang L, Tang F, Hu B, Shen J, Yu T, Meng Q (2001) Chemical reactions of 2,5 dimercapto-1,3,4-thiadiazole (DMTD) with metallic copper, silver, and mercury. J Phys Chem B 105:7984–7989CrossRefGoogle Scholar
  55. 55.
    Shouji E, Yokoyama Y, Pope JM, Oyama N, Buttry DA (1997) Electrochemical and Spectroscopic investigation of the influence of acid-base chemistry on the redox properties of 2,5-dimercapto-1,3,4-thiadiazole. J Phys Chem B 101:2861–2866CrossRefGoogle Scholar
  56. 56.
    Picart S, Geniès E (1996) Electrochemical study of 2,5-dimercapto-1,3,4-thiadiazole in acetonitrile. J Electroanal Chem 408:53–60CrossRefGoogle Scholar
  57. 57.
    Tatsuma T, Yokoyama Y, Buttry DA, Oyama N (1997) Electrochemical polymerization and depolymerization of 2,5-dimercapto-1,3,4-thiadiazole, QCM and spectroscopic analysis. J Phys Chem B 101:7556–7562CrossRefGoogle Scholar
  58. 58.
    Barsoukov E, Macdonald JR (2005) Impedance spectroscopy, theory, experiment, and applications. Wiley, New YorkCrossRefGoogle Scholar
  59. 59.
    Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics- I. Alternating current characteristics. J Chem Phys 9:341–351CrossRefGoogle Scholar
  60. 60.
    Epelboin I, Gabrielli C, Keddam M, Takenouti H (1981) A-C impedance measurements applied to corrosion studies and corrosion rate determination. In: Mansfeld F, Bertocci U (eds) Electrochemical corrosion testing STP 727. Am Soc Test Mater, PhiladelphiaGoogle Scholar
  61. 61.
    Benoit M, Bataillon C, Gwinner B, Miserque F, Orazem ME, Sánchez-Sánchez CM, Tribollet B, Vivier V (2016) Comparison of different methods for measuring the passive film thickness on metals. Electrochim Acta 201:340–347CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • W. Qafsaoui
    • 1
  • A. Et Taouil
    • 2
    Email author
  • M. W. Kendig
    • 3
  • O. Heintz
    • 4
  • H. Cachet
    • 5
  • S. Joiret
    • 5
  • H. Takenouti
    • 5
  1. 1.Laboratoire de l’Eau et de l’Environnement, Faculté des Sciences d’El JadidaEl JadidaMorocco
  2. 2.Institut UTINAM, UMR 6213, CNRSUniversité de Bourgogne Franche-ComtéBesançon CedexFrance
  3. 3.Kendig Research Associates LLCThousand OaksUSA
  4. 4.Laboratoire ICB, UMR 6303, CNRSUniversité de Bourgogne Franche-ComtéDijon CedexFrance
  5. 5.Sorbonne Universités, UPMC Univ Paris 06, CNRS Laboratoire Interfaces et Systèmes ElectrochimiquesParisFrance

Personalised recommendations