Advertisement

Single-step electrodeposition of superhydrophobic black NiO thin films

  • A. Bahramian
  • M. EyraudEmail author
  • F. Vacandio
  • V. Hornebecq
  • T. Djenizian
  • P. Knauth
Short Communication
  • 36 Downloads
Part of the following topical collections:
  1. Solar Cells

Abstract

Black finished surfaces have extensive applications in many domains, such as optics, solar cells, and aerospace. The single-step electrodeposition of superhydrophobic black NiO films from a dimethyl sulfoxide-based electrolyte is described in this paper. The physicochemical properties of the obtained film were characterized using scanning electron microscopy, X-ray diffraction, and electrochemical tests (electrochemical impedance spectroscopy and potentiodynamic polarization). A rough surface with a low reflection of light was formed after the deposition process that increased the contact angle of water from about 87° (for bare Cu) to 163° (in presence of the black coating), which improved the corrosion resistance of the Cu substrate by about 30%. The formed black NiO film revealed a notably high stability and kept its appearance even after corrosion tests.

Graphical Abstract

Keywords

Black NiO Superhydrophobic Corrosion Electrodeposition Thin films 

Notes

Acknowledgement

The project (APODISE, No. ANR-11-IDEX-0001-02) leading to this publication has received funding from Excellence Initiative of Aix-Marseille University—A*MIDEX, a French “Investissements d’Avenir” programme.

References

  1. 1.
    Liu Y, Beckett D, Hawthorne D (2011) Effect of heat treatment, top coatings and conversion coatings on the corrosion properties of black electroless Ni–P films. Appl Surf Sci 257:4486–4494.  https://doi.org/10.1016/j.apsusc.2010.12.105 CrossRefGoogle Scholar
  2. 2.
    Somasundaram S, Pillai AM, Rajendra A, Sharma AK (2015) High emittance black nickel coating on copper substrate for space applications. J Alloy Compd 643:263–269.  https://doi.org/10.1016/j.jallcom.2015.04.149 CrossRefGoogle Scholar
  3. 3.
    Persky MJ (1999) Review of black surfaces for space-borne infrared systems. Rev Sci Instrum 70:2193–2217.  https://doi.org/10.1063/1.1149739 CrossRefGoogle Scholar
  4. 4.
    Rahman T, Bonilla RS, Nawabjan A, Wilshaw PR, Boden SA (2017) Passivation of all-angle black surfaces for silicon solar cells. Sol Energy Mater Sol Cells 160:444–453.  https://doi.org/10.1016/j.solmat.2016.10.044 CrossRefGoogle Scholar
  5. 5.
    Wang YF, Fu WG, Feng M, Cao XW (2008) Investigation of the structure and the physical properties of nickel–phosphorus ultra-black surfaces. Appl Phys A 90:549–553.  https://doi.org/10.1007/s00339-007-4323-z CrossRefGoogle Scholar
  6. 6.
    Yue PP, Jin YZ, Hu XD, Yan HY, Zeng GQ (2014) Study on the surface morphologies of nickel–phosphorus ultra-black films. Adv Mater Res 924:166–169.  https://doi.org/10.4028/www.scientific.net/AMR.924.166 CrossRefGoogle Scholar
  7. 7.
    Xing F, Zhao B, Shi W (2013) Study on tunable fabrication of the ultra-black Ni–P film and its blacking mechanism. Electrochim Acta 100:157–163.  https://doi.org/10.1016/j.electacta.2013.03.145 CrossRefGoogle Scholar
  8. 8.
    Brown RJC, Brewer PJ, Milton MJT (2002) The physical and chemical properties of electroless nickel–phosphorus alloys and low reflectance nickel–phosphorus black surfaces. J Mater Chem 12:2749–2754.  https://doi.org/10.1039/B204483H CrossRefGoogle Scholar
  9. 9.
    Liu T, Chen S, Cheng S, Tian J, Chang X, Yin Y (2007) Corrosion behavior of super-hydrophobic surface on copper in seawater. Electrochim Acta 52:8003–8007.  https://doi.org/10.1016/j.electacta.2007.06.072 CrossRefGoogle Scholar
  10. 10.
    Wan Y, Chen M, Liu W, Shen X, Min Y, Xu Q (2018) The research on preparation of superhydrophobic surfaces of pure copper by hydrothermal method and its corrosion resistance. Electrochim Acta 270:310–318.  https://doi.org/10.1016/j.electacta.2018.03.060 CrossRefGoogle Scholar
  11. 11.
    Yu D, Tian J, Dai J, Wang X (2013) Corrosion resistance of three-layer superhydrophobic composite coating on carbon steel in seawater. Electrochim Acta 97:409–419.  https://doi.org/10.1016/j.electacta.2013.03.071 CrossRefGoogle Scholar
  12. 12.
    Esmailzadeh S, Khorsand S, Raeissi K, Ashrafizadeh F (2015) Microstructural evolution and corrosion resistance of super-hydrophobic electrodeposited nickel films. Surf Coat Technol 283:337–346.  https://doi.org/10.1016/j.surfcoat.2015.11.005 CrossRefGoogle Scholar
  13. 13.
    He Y, Sun WT, Wang SC, Reed PAS, Walsh FC (2017) An electrodeposited Ni-P-WS 2 coating with combined super-hydrophobicity and self-lubricating properties. Electrochim Acta 245:872–882.  https://doi.org/10.1016/j.electacta.2017.05.166 CrossRefGoogle Scholar
  14. 14.
    Akaltun Y, Çayır T (2015) Fabrication and characterization of NiO thin films prepared by SILAR method. J Alloy Compd 625:144–148.  https://doi.org/10.1016/j.jallcom.2014.10.194 CrossRefGoogle Scholar
  15. 15.
    Martínez-Gil M, Pintor-Monroy MI, Cota-Leal M, Cabrera-German D, Garzon-Fontecha A, Quevedo-López MA, Sotelo-Lerma M (2017) Influence of annealing temperature on nickel oxide thin films grown by chemical bath deposition. Mater Sci Semicond Process 72:37–45.  https://doi.org/10.1016/j.mssp.2017.09.021 CrossRefGoogle Scholar
  16. 16.
    Das MR, Mukherjee A, Mitra P (2017) Structural, optical and ac electrical characterization of CBD synthesized NiO thin films: influence of thickness. Physica E 93:243–251.  https://doi.org/10.1016/j.physe.2017.06.018 CrossRefGoogle Scholar
  17. 17.
    Horak P, Remes Z, Bejsovec V, Vacik J, Danis S, Kormunda M (2017) Nickel oxide films by thermal annealing of ion-beam-sputtered Ni: structure and electro-optical properties. Thin Solid Films 640:52–59.  https://doi.org/10.1016/j.tsf.2017.08.047 CrossRefGoogle Scholar
  18. 18.
    Jlassi M, Sta I, Hajji M, Ezzaouia H (2014) Optical and electrical properties of nickel oxide thin films synthesized by sol–gel spin coating. Mater Sci Semicond Process 21:7–13.  https://doi.org/10.1016/j.mssp.2014.01.018 CrossRefGoogle Scholar
  19. 19.
    Mutkule SU, Navale ST, Jadhav VV, Ambade SB, Naushad M, Sagar AD, Patil VB, Stadler FJ, Mane RS (2017) Solution-processed nickel oxide films and their liquefied petroleum gas sensing activity. J Alloy Compd 695:2008–2015.  https://doi.org/10.1016/j.jallcom.2016.11.037 CrossRefGoogle Scholar
  20. 20.
    Koussi-Daoud S, Planchat A, Renaud A, Pellegrin Y, Odobel F, Pauporté T (2017) Solvent-templated electrodeposition of mesoporous nickel oxide layers for solar cell applications. ChemElectroChem 4:2618–2625.  https://doi.org/10.1002/celc.201700495 CrossRefGoogle Scholar
  21. 21.
    Bahramian A, Eyraud M, Vacandio F, Knauth P (2018) Improving the corrosion properties of amorphous Ni–P thin films using different additives. Surf Coat Technol 345:40–52.  https://doi.org/10.1016/j.surfcoat.2018.03.075 CrossRefGoogle Scholar
  22. 22.
    Stalder AF, Melchior T, Müller M, Sage D, Blu T, Unser M (2010) Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids Surf A 364:72–81.  https://doi.org/10.1016/j.colsurfa.2010.04.040 CrossRefGoogle Scholar
  23. 23.
    Liu Y, Li S, Zhang J, Wang Y, Han Z, Ren L (2014) Fabrication of biomimetic superhydrophobic surface with controlled adhesion by electrodeposition. Chem Eng J 248:440–447.  https://doi.org/10.1016/j.cej.2014.03.046 CrossRefGoogle Scholar
  24. 24.
    Nalage SR, Chougule MA, Sen S, Joshi PB, Patil VB (2012) Sol–gel synthesis of nickel oxide thin films and their characterization. Thin Solid Films 520:4835–4840.  https://doi.org/10.1016/j.tsf.2012.02.072 CrossRefGoogle Scholar
  25. 25.
    Hashemzadeh M, Raeissi K, Ashrafizadeh F, Khorsand S (2015) Effect of ammonium chloride on microstructure, super-hydrophobicity and corrosion resistance of nickel coatings. Surf Coat Technol 283:318–328.  https://doi.org/10.1016/j.surfcoat.2015.11.008 CrossRefGoogle Scholar
  26. 26.
    Esmaeilzadeh P, Sadeghi MT, Fakhroueian Z, Bahramian A, Norouzbeigi R (2015) Wettability alteration of carbonate rocks from liquid-wetting to ultra gas-wetting using TiO2, SiO2 and CNT nanofluids containing fluorochemicals, for enhanced gas recovery. J Nat Gas Sci Eng 26:1294–1305.  https://doi.org/10.1016/j.jngse.2015.08.037 CrossRefGoogle Scholar
  27. 27.
    Hang T, Hu A, Ling H, Li M, Mao D (2010) Super-hydrophobic nickel films with micro-nano hierarchical structure prepared by electrodeposition. Appl Surf Sci 256:2400–2404.  https://doi.org/10.1016/j.apsusc.2009.10.074 CrossRefGoogle Scholar
  28. 28.
    Tian F, Hu A, Li M, Mao D (2012) Superhydrophobic nickel films fabricated by electro and electroless deposition. Appl Surf Sci 258:3643–3646.  https://doi.org/10.1016/j.apsusc.2011.11.130 CrossRefGoogle Scholar
  29. 29.
    Khorsand S, Raeissi K, Ashrafizadeh F, Arenas MA, Conde A (2016) Corrosion behaviour of super-hydrophobic electrodeposited nickel–cobalt alloy film. Appl Surf Sci 364:349–357.  https://doi.org/10.1016/j.apsusc.2015.12.122 CrossRefGoogle Scholar
  30. 30.
    Huttunen-Saarivirta E, Rajala P, Bomberg M, Carpén L (2017) EIS study on aerobic corrosion of copper in ground water: influence of micro-organisms. Electrochim Acta 240:163–174.  https://doi.org/10.1016/j.electacta.2017.04.073 CrossRefGoogle Scholar
  31. 31.
    Rezaei Niya SM, Hoorfar M (2016) On a possible physical origin of the constant phase element. Electrochim Acta 188:98–102.  https://doi.org/10.1016/j.electacta.2015.11.142 CrossRefGoogle Scholar
  32. 32.
    Torabi S, Cherry M, Duijnstee EA, Le Corre VM, Qiu L, Hummelen JC, Palasantzas G, Koster LJA (2017) Rough electrode creates excess capacitance in thin-film capacitors. ACS Appl Mater Interfaces 9:27290–27297.  https://doi.org/10.1021/acsami.7b06451 CrossRefGoogle Scholar
  33. 33.
    Inamdar AI, Kim Y, Pawar SM, Kim JH, Im H, Kim H (2011) Chemically grown, porous, nickel oxide thin-film for electrochemical supercapacitors. J Power Sources 196:2393–2397.  https://doi.org/10.1016/j.jpowsour.2010.09.052 CrossRefGoogle Scholar
  34. 34.
    Patil UM, Salunkhe RR, Gurav KV, Lokhande CD (2008) Chemically deposited nanocrystalline NiO thin films for supercapacitor application. Appl Surf Sci 255:2603–2607.  https://doi.org/10.1016/j.apsusc.2008.07.192 CrossRefGoogle Scholar
  35. 35.
    Liu K-C, Anderson MA (1996) Porous nickel oxide/nickel films for electrochemical capacitors. J Electrochem Soc 143:7CrossRefGoogle Scholar
  36. 36.
    Pojtanabuntoeng T, Kinsella B, Ehsani H, McKechnie J (2017) Assessment of corrosion control by pH neutralisation in the presence of glycol at low temperature. Corros Sci 126:94–103.  https://doi.org/10.1016/j.corsci.2017.06.018 CrossRefGoogle Scholar
  37. 37.
    Liu G, Huang Z, Wang L, Sun W, Wang S, Deng X (2013) Effects of Ce4+ on the structure and corrosion resistance of electroless deposited Ni–Cu–P coating. Surf Coat Technol 222:25–30.  https://doi.org/10.1016/j.surfcoat.2013.01.053 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRS, Madirel, UMR 7246, Electrochemistry of Materials GroupMarseilleFrance
  2. 2.Department of Flexible Electronics, Center of Microelectronics in ProvenceMines Saint-EtienneGardanneFrance

Personalised recommendations