Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 4, pp 399–411 | Cite as

Pulse electrodeposition and characterization of Zn–Mn coatings deposited from additive-free chloride electrolytes

  • Florian Claudel
  • Nicolas SteinEmail author
  • Nathalie Allain
  • Albert Tidu
  • Nicolas Hajczak
  • Régis Lallement
  • Damien Close
Research Article
  • 43 Downloads
Part of the following topical collections:
  1. Electrodeposition

Abstract

Zn–Mn coatings were deposited by means of pulse plating on steel substrates from additive-free chloride electrolytes. Theoretical aspects of the pulse plating of Zn–Mn alloys were considered for defining the optimal range of electrical and time parameters prior to deposition. The influence of the average and peak current densities as well as the time parameters—namely on- and off-time—on the deposit properties was investigated. In order to determine optimal deposition parameters, the composition, morphology, texture and crystallinity were characterized by means of scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS) and X-ray diffraction (XRD). Deposits obtained by applying a continuous current exhibited a rough surface with the presence of pores and cracks, a Mn content of 13 wt% and faradaic efficiencies of 65%. By comparison, homogeneous, compact and pore-free deposits containing up to 15 wt% Mn and with a monophasic ε2-ZnMn crystallography were obtained with efficiencies up to 90% using pulse plating.

Graphical abstract

Keywords

Zn–Mn alloys Pulse electrodeposition Characterization XRD analyses SEM analyses 

Notes

References

  1. 1.
    Wilcox GD, Gabe DR (1993) Electrodeposited zinc alloy coatings. Corros Sci 35(5–8):1251–1258CrossRefGoogle Scholar
  2. 2.
    Sylla D, Savall C, Gadouleau M, Rebere C, Creus J, Refait P (2005) Electrodeposition of Zn–Mn alloys on steel using an alkaline pyrophosphate-based electrolytic bath. Surf Coat Technol 200(7):2137–2145.  https://doi.org/10.1016/j.surfcoat.2004.11.020 CrossRefGoogle Scholar
  3. 3.
    Sagiyama M, Urakawa T, Adaniya T, Hara T, Fukuda Y (1987) Electrodeposition of zinc-manganese on steel strip. Plat Surf Finish 74(11):77–82Google Scholar
  4. 4.
    Gabe DR, Wilcox GD, Jamani A (1993) Zinc-Manganese alloy electrodeposition. Met Finish 91(8):34Google Scholar
  5. 5.
    Gabe DR (1994) Protective layered electrodeposits. Electrochim Acta 39(8–9):1115–1121CrossRefGoogle Scholar
  6. 6.
    Boshkov N, Vitkova S, Petrov K (2001) Corrosion products of zinc-manganese coatings: part I—investigations using microprobe analysis and X-ray diffraction. Met Finish 99(9):56–60CrossRefGoogle Scholar
  7. 7.
    Boshkov N, Petrov K, Vitkova S (2002) Corrosion products of zinc-manganese coatings—part III: double-protective action of manganese. Met Finish 100(6):98–100CrossRefGoogle Scholar
  8. 8.
    Boshkov N (2003) Galvanic Zn–Mn alloys—electrodeposition, phase composition, corrosion behaviour and protective ability. Surf Coat Technol 172(2–3):217–226.  https://doi.org/10.1016/s0257-8972(03)00463-8 CrossRefGoogle Scholar
  9. 9.
    Bučko M, Rogan J, Jokić B, Mitrić M, Lačnjevac U, Bajat JB (2013) Electrodeposition of Zn–Mn alloys at high current densities from chloride electrolyte. J Solid State Electrochem 17(5):1409–1419.  https://doi.org/10.1007/s10008-013-2004-8 CrossRefGoogle Scholar
  10. 10.
    Brenner A (1963) Electrodeposition of alloys, vol. II. ACademic Press, New YorkGoogle Scholar
  11. 11.
    Savall C, Rebere C, Sylla D, Gadouleau M, Refait P, Creus J (2006) Morphological and structural characterisation of electrodeposited Zn–Mn alloys from acidic chloride bath. Mater Sci Eng A 430(1–2):165–171.  https://doi.org/10.1016/j.msea.2006.05.025 CrossRefGoogle Scholar
  12. 12.
    Ganesan S, Prabhu G, Popov BN (2014) Electrodeposition and characterization of Zn-Mn coatings for corrosion protection. Surf Coat Technol 238:143–151.  https://doi.org/10.1016/j.surfcoat.2013.10.062 CrossRefGoogle Scholar
  13. 13.
    Loukil N, Feki M (2017) Zn–Mn alloy coatings from acidic chloride bath: effect of deposition conditions on the Zn–Mn electrodeposition-morphological and structural characterization. Appl Surf Sci 410:574–584.  https://doi.org/10.1016/j.apsusc.2017.02.075 CrossRefGoogle Scholar
  14. 14.
    Tkalenko DA, Pokhmurs’kyi VI, Tkalenko MD (1997) Surface properties of metals and overvoltage of hydrogen release from electrolytes. Mater Sci 33:(6)CrossRefGoogle Scholar
  15. 15.
    Close D, Stein N, Allain N, Tidu A, Drynski E, Merklein M, Lallement R (2016) Electrodeposition, microstructural characterization and anticorrosive properties of Zn-Mn alloy coatings from acidic chloride electrolyte containing 4-hydroxybenzaldehyde and ammonium thiocyanate. Surf Coat Technol 298:73–82.  https://doi.org/10.1016/j.surfcoat.2016.04.043 CrossRefGoogle Scholar
  16. 16.
    Bučko M, Rogan J, Stevanović SI, Perić-Grujić A, Bajat JB (2011) Initial corrosion protection of Zn–Mn alloys electrodeposited from alkaline solution. Corros Sci 53(9):2861–2871.  https://doi.org/10.1016/j.corsci.2011.05.039 CrossRefGoogle Scholar
  17. 17.
    Loukil N, Feki M (2017) Synergistic effect of triton X 100 and 3-hydroxybenzaldehyde on Zn-Mn electrodeposition from acidic chloride bath. J Alloys Compd 719:420–428.  https://doi.org/10.1016/j.jallcom.2017.05.142 CrossRefGoogle Scholar
  18. 18.
    Sylla D, Creus J, Savall C, Roggy O, Gadouleau M, Refait P (2003) Electrodeposition of Zn–Mn alloys on steel from acidic Zn–Mn chloride solutions. Thin Solid Films 424(2):171–178.  https://doi.org/10.1016/s0040-6090(02)01048-9 CrossRefGoogle Scholar
  19. 19.
    Diaz-Arista P, Ortiz ZI, Ruiz H, Ortega R, Meas Y, trejo G (2009) Electrodeposition and characterization of Zn-Mn alloy coatings obtained from a chloride-based acidic bath containing ammonium thiocyanate as an additive. Surf Coat Technol 203:1167–1175CrossRefGoogle Scholar
  20. 20.
    Shivakurama S, Arthoba Naik Y, Achary G, Sachin HP, Venkatesha TV (2008) Influence of condensation product on electrodeposition of Zn-Mn alloy on steel. Indian J Chem Technol 15:29–35Google Scholar
  21. 21.
    Ortiz ZI, Díaz-Arista P, Meas Y, Ortega-Borges R, Trejo G (2009) Characterization of the corrosion products of electrodeposited Zn, Zn–Co and Zn–Mn alloys coatings. Corros Sci 51(11):2703–2715.  https://doi.org/10.1016/j.corsci.2009.07.002 CrossRefGoogle Scholar
  22. 22.
    Chandrasekar MS, Pushpavanam M (2008) Pulse and pulse reverse plating—conceptual, advantages and applications. Electrochim Acta 53(8):3313–3322.  https://doi.org/10.1016/j.electacta.2007.11.054 CrossRefGoogle Scholar
  23. 23.
    Hansal WEG, Roy S (2012) Pulse plating. Eugen G. Leuze Verlag KG, SaulgauGoogle Scholar
  24. 24.
    Danilov FI, Gerasimov VV, Sukhomlin DA (2001) Pulsed electrodeposition of Zinc-Manganese Alloys. Russ J Electrochem 37(3):308–310CrossRefGoogle Scholar
  25. 25.
    Müller C, Sarret M, Andreu T (2003) ZnMn alloys obtained using pulse, reverse and superimposed current modulations. Electrochim Acta 48(17):2397–2404.  https://doi.org/10.1016/s0013-4686(03)00253-6 CrossRefGoogle Scholar
  26. 26.
    Müller C, Sarret M, Andreu T (2003) Electrodeposition of ZnMn alloys using pulse plating. J Electrochem Soc 150(11):C772.  https://doi.org/10.1149/1.1614270 CrossRefGoogle Scholar
  27. 27.
    Puippe JC, Ibl N (1980) Influence of charge and discharge of electric double layer in pulse plating. J Appl Electrochem 10:775–784CrossRefGoogle Scholar
  28. 28.
    Ibl N (1980) Some theoretical aspects of pulse electrolysis. Surf Technol 10(2):81–104CrossRefGoogle Scholar
  29. 29.
    Datta M, Landolt D (1985) Experimental investigation of mass transport in pulse plating. Surf Technol 25(2):97–110CrossRefGoogle Scholar
  30. 30.
    Gamburg YD, Zangari G (2011) Theory and practice of metal electrodeposition. Springer, New YorkCrossRefGoogle Scholar
  31. 31.
    Chène O, Landolt D (1989) The influence of mass transport on the deposit morphology and the current efficiency in pulse plating of copper. J Appl Electrochem 19(2):188–194CrossRefGoogle Scholar
  32. 32.
    Lide DR (2003) CRC handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  33. 33.
    Okamoto H, Tanner LE (1990) Mn-Zn (manganese-zinc). Bin Alloy Phase Diagr II Ed 3:2625–2629Google Scholar
  34. 34.
    Frade T, Bouzon V, Gomes A, da Silva Pereira MI (2010) Pulsed-reverse current electrodeposition of Zn and Zn-TiO2 nanocomposite films. Surf Coat Technol 204(21–22):3592–3598.  https://doi.org/10.1016/j.surfcoat.2010.04.030 CrossRefGoogle Scholar
  35. 35.
    Youssef KM, Koch CC, Fedkiw PS (2008) Influence of pulse plating parameters on the synthesis and preferred orientation of nanocrystalline zinc from zinc sulfate electrolytes. Electrochim Acta 54(2):677–683.  https://doi.org/10.1016/j.electacta.2008.07.048 CrossRefGoogle Scholar
  36. 36.
    Youssef KMS, Koch CC, Fedkiw PS (2004) Influence of additives and pulse electrodeposition parameters on production of nanocrystalline zinc from zinc chloride electrolytes. J Electrochem Soc 151(2):C103.  https://doi.org/10.1149/1.1636739 CrossRefGoogle Scholar
  37. 37.
    El-Sherik AM, Erb U, Page J (1996) Microstructural evolution in pulse plated nickel electrodeposits. Surf Coat Technol 88:70–78CrossRefGoogle Scholar
  38. 38.
    Müller C, Sarret M, Andreu T (2002) Electrodeposition of Zn-Mn alloys at low current densities. J Electrochem Soc 149:C600–C606CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Arts et Métiers ParisTechUniversité de Lorraine, CNRSMetzFrance
  2. 2.Université de Lorraine, CNRSMetzFrance
  3. 3.Daimler AGStuttgartGermany

Personalised recommendations