Advertisement

Decoration of cobalt/iron oxide nanoparticles on N-doped carbon nanosheets: Electrochemical performances for lithium-ion batteries

  • Muhammad Kashif AslamEmail author
  • Syed Shoaib Ahmad Shah
  • Tayyaba Najam
  • Sha Li
  • ChangGuo ChenEmail author
Research Article
  • 12 Downloads
Part of the following topical collections:
  1. Batteries
  2. Batteries

Abstract

Cobalt/iron oxide nanoparticles (CFO/NPs) were fabricated with a facile solid combustion method and decorated on polyaniline-derived porous N-doped carbon nanosheets. The N-doped carbon nanosheets provide a pathway for charge transfer and act as defensive layers to avoid the agglomeration of nanoparticles. The decoration of CFO nanoparticles on porous N-doped carbon nanosheets (CFO/NC) typically leads to hybrid material that displays an exceptionally high electrochemical performance for Li-ion batteries (LIBs) with excellent diffusion of electrolyte ions and ensures fast Li+/e transport. The initial discharge capacity reaches up to 1270 mAh g−1 (1.65 mAh cm−2) at a current density of 500 mA g−1 (0.65 mA cm− 2). Furthermore, it also exhibits an exceptionally high specific capacity of 635 mAh g−1 at a high current density of 500 mA g−1 (500 mA g−1) after long cycling (250 cycles) and a remarkable rate capability with 93% capacity retention. These excellent electrochemical characteristics demonstrate that CFO/NC is a promising anode material for LIBs.

Graphical abstract

Keywords

Binary oxide N-doped carbon nanosheet Anode material Lithium-ion battery 

Notes

Acknowledgements

This work is supported by National Natural Science Foundation of China (Grant No. 21273292).

References

  1. 1.
    Goodenough JB, Park K-S (2013) The Li-Ion rechargeable battery: a perspective. J Am Chem Soc 135:1167–1176CrossRefGoogle Scholar
  2. 2.
    Panwar NL, Kaushik S, C, Kothari S (2011) Role of renewable energy sources in environmental protection: a review. Renew Sustain Energy Rev 15:1513–1524CrossRefGoogle Scholar
  3. 3.
    Li J, Aslam MK, Chen C (2018) One-pot hydrothermal synthesis of porous α-Ni(OH)2/C composites and its application in Ni/Zn alkaline rechargeable battery. J Electrochem Soc 165:A910–A917CrossRefGoogle Scholar
  4. 4.
    Li S, Cen Y, Xiang Q, Aslam MK, Hu B, Li W, Tang Y, Yu Q, Liu Y, Chen C (2019) Vanadium dioxide–reduced graphene oxide binary host as an efficient polysulfide plague for high-performance lithium–sulfur batteries. J Mater Chem A.  https://doi.org/10.1039/C8TA10422K Google Scholar
  5. 5.
    Zhou Y, Liu Y, Zhao W, Wang H, Li B, Zhou X, Shen H (2015) Controlled synthesis of series NixCo3–xO4 products: morphological evolution towards quasi-single-crystal structure for high-performance and stable lithium-ion batteries. Sci Rep 5:11584CrossRefGoogle Scholar
  6. 6.
    Huang G, Zhang F, Zhang L, Du X, Wang J, Wang L (2014) Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for superior lithium ion battery anodes. J Mater Chem A 2:8048–8053CrossRefGoogle Scholar
  7. 7.
    Sun S, Wen Z, Jin J, Cui Y, Lu Y (2013) Synthesis of ordered mesoporous CuCo2O4 with different textures as anode material for lithium ion battery. Microporous Mesoporous Mater 169:242–247CrossRefGoogle Scholar
  8. 8.
    Song X, Ru Q, Zhang B, Hu S, An B (2014) Flake-by-flake ZnCo2O4 as a high capacity anode material for lithium-ion battery. J Alloys Compd 585:518–522CrossRefGoogle Scholar
  9. 9.
    Zheng F, Zhu D, Chen Q (2014) Facile fabrication of porous NixCo3–xO4 nanosheets with enhanced electrochemical performance as anode materials for Li-ion batteries. ACS Appl Mater Interfaces 6:9256–9264CrossRefGoogle Scholar
  10. 10.
    Mohamed SG, Chen C-J, Chen CK, Hu S-F, Liu R-S (2014) High-performance lithium-ion battery and symmetric supercapacitors based on FeCo2O4 nanoflakes electrodes. ACS Appl Mater Interfaces 6:22701–22708CrossRefGoogle Scholar
  11. 11.
    Guo H, Li T, Chen W, Liu L, Yang X, Wang Y, Guo Y (2014) General design of hollow porous CoFe2O4 nanocubes from metal-organic frameworks with extraordinary lithium storage. Nanoscale 6:15168–15174CrossRefGoogle Scholar
  12. 12.
    Yang G, Xu X, Yan W, Yang H, Ding S (2014) Single-spinneret electrospinning fabrication of CoMn2O4 hollow nanofibers with excellent performance in lithium-ion batteries. Electrochim Acta 137:462–469CrossRefGoogle Scholar
  13. 13.
    Zhang J, Liang J, Zhu Y, Wei D, Fan L, Qian Y (2014) Synthesis of Co2SnO4 hollow cubes encapsulated in graphene as high capacity anode materials for lithium-ion batteries. J Mater Chem A 2:2728–2734CrossRefGoogle Scholar
  14. 14.
    Fu X, Chen D, Wang M, Yang Y, Wu Q, Ma J, Zhao X (2014) Synthesis of porous CoFe2O4 octahedral structures and studies on electrochemical Li storage behavior. Electrochim Acta 116:164–169CrossRefGoogle Scholar
  15. 15.
    Aslam MK, Shah SSA, Li S, Chen C (2018) Kinetically controlled synthesis of MOF nanostructures: single-holed hollow core–shell ZnCoS@Co9S8/NC for ultra-high performance lithium-ion batteries. J Mater Chem A 6:14083–14090CrossRefGoogle Scholar
  16. 16.
    Yang X, Wang X, Zhang Z (2005) Electrochemical properties of submicron cobalt ferrite spinel through a co-precipitation method. J Cryst Growth 277:467–470CrossRefGoogle Scholar
  17. 17.
    Lavela P, Tirado JL (2007) CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J Power Sources 172:379–387CrossRefGoogle Scholar
  18. 18.
    Ding Y, Yang Y, Shao H (2012) Synthesis and characterization of nanostructured CuFe2O4 anode material for lithium ion battery. Solid State Ionics 217:27–33CrossRefGoogle Scholar
  19. 19.
    Torad NL, Salunkhe RR, Li Y, Hamoudi H, Imura M, Sakka Y, Hu C-C, Yamauchi Y (2014) Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67. Chem Eur J 20:7895–7900CrossRefGoogle Scholar
  20. 20.
    Liu Y, Jiang H, Zhu Y, Yang X, Li C (2016) Transition metals (Fe, Co, and Ni) encapsulated in nitrogen-doped carbon nanotubes as bi-functional catalysts for oxygen electrode reactions. J Mater Chem A 4:1694–1701CrossRefGoogle Scholar
  21. 21.
    Liu B, Shioyama H, Akita T, Xu Q (2008) Metal-organic framework as a template for porous carbon synthesis. J Am Chem Soc 130:5390–5391CrossRefGoogle Scholar
  22. 22.
    Sun J-K, Xu Q (2014) Functional materials derived from open framework templates/precursors: synthesis and applications. Energy Environ Sci 7:2071–2100CrossRefGoogle Scholar
  23. 23.
    Bhattacharyya S, Konkena B, Jayaramulu K, Schuhmann W, Maji TK (2017) Synthesis of nano-porous carbon and nitrogen doped carbon dots from an anionic MOF: a trace cobalt metal residue in carbon dots promotes electrocatalytic ORR activity. J Mater Chem A 5:13573–13580CrossRefGoogle Scholar
  24. 24.
    Liu J, Xiao J, Zeng X, Dong P, Zhao J, Zhang Y, Li X (2017) Combustion synthesized macroporous structure MFe2O4 (M = Zn, Co) as anode materials with excellent electrochemical performance for lithium ion batteries. J Alloys Compd 699:401–407CrossRefGoogle Scholar
  25. 25.
    Sharifi I, Shokrollahi H, Doroodmand MM, Safi R (2012) Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J Magn Magn Mater 324:1854–1861CrossRefGoogle Scholar
  26. 26.
    Marco JF, Gancedo JR, Gracia M, Gautier JL, Ríos E, Berry FJ (2000) Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J Solid State Chem 153:74–81CrossRefGoogle Scholar
  27. 27.
    Xia W, Mahmood A, Zou R, Xu Q (2015) Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ Sci 8:1837–1866CrossRefGoogle Scholar
  28. 28.
    Tang C, Wang H-F, Chen X, Li B-Q, Hou T-Z, Zhang B, Zhang Q, Titirici M-M, Wei F (2016) Topological defects in metal-free nanocarbon for oxygen electrocatalysis. Adv Mater 28:6845–6851CrossRefGoogle Scholar
  29. 29.
    Liu Y, Shen Y, Sun L, Li J, Liu C, Ren W, Li F, Gao L, Chen J, Liu F, Sun Y, Tang N, Cheng H-M, Du Y (2016) Elemental superdoping of graphene and carbon nanotubes. Nat Commun 7:10921CrossRefGoogle Scholar
  30. 30.
    Amiinu IS, Liu X, Pu Z, Li W, Li Q, Zhang J, Tang H, Zhang H, Mu S (2018) From 3D ZIF nanocrystals to Co–Nx/C nanorod array electrocatalysts for ORR, OER, and Zn–Air batteries. Adv Funct Mater 28:1704638CrossRefGoogle Scholar
  31. 31.
    Rai AK, Gim J, Thi TV, Ahn D, Cho SJ, Kim J (2014) High rate capability and long cycle stability of Co3O4/CoFe2O4 nanocomposite as an anode material for high-performance secondary lithium ion batteries. J Phys Chem C 118:11234–11243CrossRefGoogle Scholar
  32. 32.
    Shi W, Zhu J, Rui X, Cao X, Chen C, Zhang H, Hng HH, Yan Q (2012) Controlled synthesis of carbon-coated cobalt sulfide nanostructures in oil phase with enhanced Li storage performances. ACS Appl Mater Interfaces 4:2999–3006CrossRefGoogle Scholar
  33. 33.
    Wang Y, Wu J, Tang Y, Lü X, Yang C, Qin M, Huang F, Li X, Zhang X (2012) Phase-controlled synthesis of cobalt sulfides for lithium ion batteries. ACS Appl Mater Interfaces 4:4246–4250CrossRefGoogle Scholar
  34. 34.
    Xing Z, Ju Z, Yang J, Xu H, Qian Y (2013) One-step solid state reaction to selectively fabricate cubic and tetragonal CuFe2O4 anode material for high power lithium ion batteries. Electrochim Acta 102:51–57CrossRefGoogle Scholar
  35. 35.
    Mao J, Hou X, Wang X, Hu S, Xiang L (2015) The cubic aggregated CoFe2O4 nanoparticle anode material for lithium ion battery with good performance. Mater Lett 161:652–655CrossRefGoogle Scholar
  36. 36.
    Xie Q, Li F, Guo H, Wang L, Chen Y, Yue G, Peng D-L (2013) Template-free synthesis of amorphous double-shelled zinc–cobalt citrate hollow microspheres and their transformation to crystalline ZnCo2O4 microspheres. ACS Appl Mater Interfaces 5:5508–5517CrossRefGoogle Scholar
  37. 37.
    Xie Q, Zeng D, Ma Y, Lin L, Wang L, Peng D-L (2015) Synthesis of ZnO–ZnCo2O4 hybrid hollow microspheres with excellent lithium storage properties. Electrochim Acta 169:283–290CrossRefGoogle Scholar
  38. 38.
    Duan L, Wang Y, Wang L, Zhang F, Wang L (2015) Mesoporous MFe2O4 (M = Mn, Co, and Ni) for anode materials of lithium-ion batteries: synthesis and electrochemical properties. Mater Res Bull 61:195–200CrossRefGoogle Scholar
  39. 39.
    Wang B, Li S, Wu X, Li B, Liu J, Yu M (2015) Nanocrystal-constructed mesoporous CoFe2O4 nanowire arrays aligned on flexible carbon fabric as integrated anodes with enhanced lithium storage properties. Phys Chem Chem Phys 17:21476–21484CrossRefGoogle Scholar
  40. 40.
    Wang J, Yang G, Wang L, Yan W, Wei W (2017) C@CoFe2O4 fiber-in-tube mesoporous nanostructure: formation mechanism and high electrochemical performance as an anode for lithium-ion batteries. J Alloys Compd 693:110–117CrossRefGoogle Scholar
  41. 41.
    Zhou J, Yang T, Mao M, Ren W, Li Q (2015) Enhanced electrochemical performance of hierarchical CoFe2O4/MnO2/C nanotubes as anode materials for lithium-ion batteries. J Mater Chem A 3:12328–12333CrossRefGoogle Scholar
  42. 42.
    Xiong QQ, Tu JP, Shi SJ, Liu XY, Wang XL, Gu CD (2014) Ascorbic acid-assisted synthesis of cobalt ferrite (CoFe2O4) hierarchical flower-like microspheres with enhanced lithium storage properties. J Power Sources 256:153–159CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.College of Chemistry and Chemical EngineeringChongqing UniversityChongqingPeople’s Republic of China
  2. 2.Department of ChemistryThe Islamia University of BahawalpurBahawalpurPakistan

Personalised recommendations