Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 1, pp 45–55 | Cite as

Nickel phosphate/carbon fibre nanocomposite for high-performance pseudocapacitors

  • Mamdouh E. AbdelsalamEmail author
  • Ibrahim Elghamry
  • A. H. Touny
  • M. M. SalehEmail author
Research Article
  • 63 Downloads
Part of the following topical collections:
  1. Capacitors

Abstract

This article reports the use of crystalline nickel phosphate/carbon fibres (NiPh/CFs) nanocomposite as an electrode material for pseudocapacitor applications. The NiPh particles are synthesised by a cost-effective one-pot method, which is based on refluxing nickel and phosphate precursors at 90 °C. The crystallinity and structural morphologies of the synthesised particles are characterised by X-ray diffraction (XRD) and field-emission scanning electron microscopy (FE-SEM). Also, the N2 adsorption/desorption isotherms are recorded. The Brunauer–Emmett–Teller (BET) method is used to calculate the specific surface area. The electrochemical performances of pristine NiPh and NiPh/CFs composite electrodes are investigated in an alkaline solution of 0.5 M of KOH. The specific capacitances were calculated using cyclic voltammograms at a potential scan rate of 100 mV s− 1. For the pristine electrode, the calculated specific capacitance was 4.3 F g− 1 and for the composite NiPh/CFs electrode, it was 699.2 F g− 1. The significant improvement in the performance is attributed to the high surface area and enhanced electronic conductivity of the NiPh/CFs composite electrode. Also, the composite electrode shows outstanding stability and delivers 1000 cycles with excellent capacitance retention.

Graphical abstract

A cost-effective material for high-performance pseudocapacitors: Crystalline NiPh nanoparticles have been synthesised at 90 °C. SEM image shows the pseudocapacitors composite electrode fabricated by mixing the NiPh with CFs. The electrode delivers a specific capacitance of 699.2 F g−1; calculated from the cyclic voltammogram shown in the figure. Also, the composite electrode shows good stability and provides 1000 cycles with excellent capacitance retention.

Keywords

Pseudocapacitors Nickel Phosphate Carbon Fibres Composite 

Notes

Acknowledgements

The authors thank the Deanship of Scientific Research at King Faisal University for the financial support (Project Number 186061).

References

  1. 1.
    Vatamanu J, Bedrov D (2015) Capacitive energy storage: current and future challenges. J Phys Chem Lett 6:3594–3609CrossRefGoogle Scholar
  2. 2.
    Simon P, Gogotsi Y, Dunn B (2014) Where do batteries end and supercapacitors begin? Science 343:1210–1211CrossRefGoogle Scholar
  3. 3.
    Liang K, Li L, Yang Y (2017) Inorganic porous films for renewable energy storage. ACS Energy Lett 2:373–390CrossRefGoogle Scholar
  4. 4.
    Wen Z, Yeh M-H, Guo H et al (2016) Self-powered textile for wearable electronics by hybridizing fibre-shaped Nanogenerators, solar cells, and supercapacitors. Sci Adv 2:1–8Google Scholar
  5. 5.
    Aricò AS, Bruce P, Scrosati B et al (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  6. 6.
    Guo Y-G, Hu J-S, Wan L-J (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887CrossRefGoogle Scholar
  7. 7.
    Yoshio M, Brodd RJ, Kozawa A (2009) Lithium-ion batteries: science and technologies. Springer, BerlinCrossRefGoogle Scholar
  8. 8.
    Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854CrossRefGoogle Scholar
  9. 9.
    Béguin F, Frąckowiak E (2013) Supercapacitors: materials, systems, and applications. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  10. 10.
    Yu A, Chabot V, Zhang J (2017) Electrochemical supercapacitors for energy storage and delivery: fundamentals and applicationsGoogle Scholar
  11. 11.
    Li P, Li J, Zhao Z et al (2017) A General electrode design strategy for flexible fiber micro-pseudocapacitors combining ultrahigh energy and power delivery. Adv Sci 4:1700003CrossRefGoogle Scholar
  12. 12.
    Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14CrossRefGoogle Scholar
  13. 13.
    Costentin C, Porter TR, Savéant J-M (2017) How do pseudocapacitors store energy? Theoretical analysis and experimental illustration. ACS Appl Mater Interfaces 9:8649–8658CrossRefGoogle Scholar
  14. 14.
    Eftekhari A, Mohamedi M (2017) Tailoring pseudocapacitive materials from a mechanistic perspective. Mater Today Energy 6:211–229CrossRefGoogle Scholar
  15. 15.
    Yang B-J, Jiang L-L, Li Y-J et al (2018) Three-dimensional porous biocarbon wrapped by graphene and polypyrrole composite as electrode materials for supercapacitor. J Mater Sci Mater Electron 29:2568–2572CrossRefGoogle Scholar
  16. 16.
    Shumakovich GP, Morozova OV, Khlupova ME et al (2017) Enhanced performance of a flexible supercapacitor due to a combination of the pseudocapacitances of both a PANI/MWCNT composite electrode and a gel polymer redox electrolyte. RSC Adv 7:34192–34196CrossRefGoogle Scholar
  17. 17.
    Khdary NH, Abdesalam ME, Enany G El (2014) Mesoporous polyaniline films for high performance supercapacitors. J Electrochem Soc 161:63–68CrossRefGoogle Scholar
  18. 18.
    Nejati S, Minford TE, Smolin YY, Lau KKS (2014) Enhanced charge storage of ultrathin polythiophene films within porous nanostructures. ACS Nano 8:5413–5422CrossRefGoogle Scholar
  19. 19.
    Bryan AM, Santino LM, Lu Y et al (2016) Conducting polymers for pseudocapacitive energy storage. Chem Mater 28:5989–5998CrossRefGoogle Scholar
  20. 20.
    Peng Z, Liu X, Meng H et al (2017) Design and tailoring of the 3D macroporous hydrous RuO 2 hierarchical architectures with a hard-template method for high-performance supercapacitors. ACS Appl Mater Interfaces 9:4577–4586CrossRefGoogle Scholar
  21. 21.
    Muniraj VKA, Kamaja CK, Shelke MV (2016) RuO Nanoparticles anchored on carbon nano-onions: an Efficient electrode for solid state flexible electrochemical supercapacitor. ACS Sustain Chem Eng 4:2528–2534CrossRefGoogle Scholar
  22. 22.
    Zeng Z, Liu Y, Zhang W et al (2017) Improved supercapacitor performance of MnO 2 -electrospun carbon nanofibers electrodes by magnetic field. J Power Sources 358:22–28CrossRefGoogle Scholar
  23. 23.
    Vijayakumar S, Nagamuthu S, Muralidharan G (2013) Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl Mater Interfaces 5:2188–2196CrossRefGoogle Scholar
  24. 24.
    Wang W, Guo S, Lee I et al (2014) Hydrous ruthenium oxide nnanoparticles anchored to graphene and carbon nanotube hybrid foam for supercapacitors. Sci Rep 4:4452CrossRefGoogle Scholar
  25. 25.
    Conway BE (1999) Electrochemical supercapacitors scientific fundamentals and technological applications. Springer, New YorkGoogle Scholar
  26. 26.
    Lee HY, Goodenough JB (1999) Brief communication: supercapacitor behavior with KCl electrolyte. J Solid State Chem 144:220–223CrossRefGoogle Scholar
  27. 27.
    Kore RM, Mane RS, Naushad M et al (2016) Nanomorphology-dependent pseudocapacitive properties of NiO electrodes engineered through a controlled potentiodynamic electrodeposition process. RSC Adv 6:24478–24483CrossRefGoogle Scholar
  28. 28.
    Behm N, Brokaw D, Overson C et al (2013) High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices. J Mater Sci 48:1711–1716CrossRefGoogle Scholar
  29. 29.
    Salunkhe RR, Lin J, Malgras V et al (2015) Large-scale synthesis of coaxial carbon nanotube/Ni(OH)2 composites for asymmetric supercapacitor application. Nano Energy 11:211–218CrossRefGoogle Scholar
  30. 30.
    Zhang Y, Shi Z, Liu L et al (2017) High conductive architecture: bimetal oxide with metallic properties at bimetal hydroxide for high-performance pseudocapacitor. Electrochim Acta 231:487–494CrossRefGoogle Scholar
  31. 31.
    Zhu T, Wang Z, Ding S et al (2011) Hierarchical nickel sulfide hollow spheres for high performance supercapacitors. RSC Adv 1:397–400CrossRefGoogle Scholar
  32. 32.
    Raju K, Ozoemena KI (2015) Hierarchical one-dimensional ammonium nickel phosphate microrods for high-performance pseudocapacitors. Sci Rep 5:17629CrossRefGoogle Scholar
  33. 33.
    Jhung SH, Lee J-H, Cheetham AK et al (2006) A shape-selective catalyst for epoxidation of cyclic olefins: the nanoporous nickel phosphate VSB-5. J Catal 239:97–104CrossRefGoogle Scholar
  34. 34.
    Yang J, Tan J, Yang F et al (2012) Electro-oxidation of methanol on mesoporous nickel phosphate modified GCE. Electrochem commun 23:13–16CrossRefGoogle Scholar
  35. 35.
    Zhan Y, Lu M, Yang S et al (2016) Activity of transition-metal (manganese, iron, cobalt, and nickel) phosphates for oxygen electrocatalysis in alkaline solution. ChemCatChem 8:372–379CrossRefGoogle Scholar
  36. 36.
    Omar FS, Numan A, Duraisamy N et al (2016) Ultrahigh capacitance of amorphous nickel phosphate for asymmetric supercapacitor applications. RSC Adv 6:76298–76306CrossRefGoogle Scholar
  37. 37.
    Yang J-H, Tan J, Ma D (2014) Nickel phosphate molecular sieve as electrochemical capacitors material. J Power Sources 260:169–173CrossRefGoogle Scholar
  38. 38.
    Al-Omair MA, Touny AH, Saleh MM (2017) Reflux-based synthesis and electrocatalytic characteristics of nickel phosphate nanoparticles. J Power Sources 342:1032–1039CrossRefGoogle Scholar
  39. 39.
    Al-Omair MA, Touny AH, Al-Odail FA, Saleh MM (2017) Electrocatalytic oxidation of glucose at nickel phosphate nano/micro particles modified electrode. Electroanalysis 8:340–350Google Scholar
  40. 40.
    García A, Nieto A, Vila M, Vallet-Regí M (2013) Easy synthesis of ordered mesoporous carbon containing nickel nanoparticles by a low temperature hydrothermal method. Carbon 51:410–418CrossRefGoogle Scholar
  41. 41.
    Cychosz KA, Guillet-Nicolas R, Garcıa-Martınez J, Thommes M (2017) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Chem Soc Rev 46:389–414CrossRefGoogle Scholar
  42. 42.
    Kong L, Chen W (2016) Ionic liquid directed mesoporous carbon nanoflakes as an effiencient electrode material. Sci Rep 5:18236CrossRefGoogle Scholar
  43. 43.
    Umeshbabu E, Rajeshkhanna G, Justin P, Rao GR (2015) Synthesis of mesoporous NiCo2O4–GO by a solvothermal method for charge storage applications. RSC Adv 5:66657–66666CrossRefGoogle Scholar
  44. 44.
    Tammam H, Touny AH, Abdelsalam M, Saleh MM (2018) Mesoporous NiPh/ carbon fibers nanocomposite for enhanced electrocatalytic oxidation of ethanol. J Electroanal Chem 823:128–136CrossRefGoogle Scholar
  45. 45.
    Zhan Y, Lu M, Yang S et al (2016) The Origin of catalytic activity of nickel phosphate for oxygen evolution in alkaline solution and its further enhancement by Iron substitution. ChemElectroChem 3:615–621CrossRefGoogle Scholar
  46. 46.
    Duraisamy N, Numan A, Ramesh K et al (2015) Investigation on structural and electrochemical properties of binder free nanostructured nickel oxide thin film. Mater Lett 161:694–697CrossRefGoogle Scholar
  47. 47.
    Orazem ME, Tribollet B (2011) Electrochemical impedance spectroscopy. Wiley, New YorkGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Chemistry Department, College of ScienceKing Faisal UniversityAl-AhsaaSaudi Arabia
  2. 2.Department of Chemistry, Faculty of ScienceCairo UniversityCairoEgypt
  3. 3.Department of Chemistry, Faculty of ScienceHelwan UniversityHelwanEgypt

Personalised recommendations