Advertisement

Carbon nanotubes sheathed in lead for the oxygen evolution in zinc electrowinning

  • Chang-jiang YangEmail author
  • Qing-feng Shen
  • Da-cheng Zhai
  • Yu Gu
Research Article
  • 34 Downloads
Part of the following topical collections:
  1. Electrochemical Processes

Abstract

Oxygen evolution in harsh high acidic condition is a challenge to both zinc electrowinning and hydrogen production. In the present work, the carbon nanotubes (CNTs) sheathed in lead hybrid anode has been fabricated through electrochemical codeposition, and its electrochemical performances under zinc electrowinning condition have been discussed extensively. It is also the first time to coat CNTs by Pb with tunable method via metal oxide. The CNTs/Pb composite anode shows ten times larger exchange current density and electrochemically active surface areas (ECSA) than those of pure Pb, which indicates an extra high electro-catalytic activity. The lower overpotential and polarization resistance of the CNTs/Pb composite anode for oxygen evolution are due to integrity for efficient charge transport between matrix and PbO2 by penetrating through PbO layer. Under industrial condition of current density 500 A m−2, the overpotential can be decreased by about 120 mV compared with pure Pb during the long-term durability test. Moreover, the hybrid anode comprising ~ 0.6 wt% CNTs is also cost effective. The CNTs/Pb composite anode can be a promising and cost-effective anode in harsh high acidic condition and potentially applied in zinc electrowinning practice due to high hardness and scalable production.

Graphical abstract

Keywords

Oxygen evolution Lead Carbon nanotubes Zinc electrowinning 

Notes

Acknowledgements

This work was financial supported by the National Natural Science Foundation of China (Project No. 51664040 and 51304094), the Analysis and Testing Foundation of Kunming University of Science and Technology (Project No. 2016T20080042). Many thanks to Prof. Hongtao Guan and Zhengwei Xiao for suggestion of grammar.

References

  1. 1.
    Free ML, Moats M, Houlachi G, Asselin E, Allanore A, Yurko J, Wang S (2012) Electrometallurgy, 1 edn. Wiley, New YorkGoogle Scholar
  2. 2.
    Loutfy RO, Leroy RL (1978) Energy efficiency in metal electrowinning. J Appl Electrochem 8(6):549–555.  https://doi.org/10.1007/bf00610801 CrossRefGoogle Scholar
  3. 3.
    Petrova M, Noncheva Z, Dobrev T, Rashkov S, Kounchev N, Petrov D, Vlaev S, Mihnev V, Zarev S, Georgieva L, Buttinelli D (1996) Investigation of the processes of obtaining plastic treatment and electrochemical behaviour of lead alloys in their capacity as anodes during the electroextraction of zinc. Hydrometallurgy 40(3):293–318.  https://doi.org/10.1016/0304-386X(95)00010-E CrossRefGoogle Scholar
  4. 4.
    Hrussanova A, Mirkova L, Dobrev T (2004) Influence of additives on the corrosion rate and oxygen overpotential of Pb-Co3O4, Pb-Ca-Sn and Pb-Sb anodes for copper electrowinning. Hydrometallurgy 72(3–4):215–224.  https://doi.org/10.1016/j.hydromet.2003.07.005 CrossRefGoogle Scholar
  5. 5.
    Ma R, Cheng S, Zhang X, Li S, Liu Z, Li X (2016) Oxygen evolution and corrosion behavior of low-MnO2-content Pb-MnO2 composite anodes for metal electrowinning. Hydrometallurgy 159:6–11.  https://doi.org/10.1016/j.hydromet.2015.10.031 CrossRefGoogle Scholar
  6. 6.
    Le Pape-Rerolle, C, Petit MA, Wiart R (1999) Catalysis of oxygen evolution on IrOx/Pb anodes in acidic sulfate electrolytes for zinc electrowinning. J Appl Electrochem 29(11):1347–1350CrossRefGoogle Scholar
  7. 7.
    Grimaud A, Diaz-Morales O, Han B, Hong WT, Lee Y-L, Giordano L, Stoerzinger KA, Koper MTM, Shao-Horn Y (2017) Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat Chem 9(5):457–465.  https://doi.org/10.1038/nchem.2695 CrossRefPubMedGoogle Scholar
  8. 8.
    Chen S, Thind SS, Chen A (2016) Nanostructured materials for water splitting: state of the art and future needs. Electrochem Commun 63:10–17.  https://doi.org/10.1016/j.elecom.2015.12.003 CrossRefGoogle Scholar
  9. 9.
    Sardar K, Petrucco E, Hiley CI, Sharman JDB, Wells PP, Russell AE, Kashtiban RJ, Sloan J, Walton RI (2014) Water-splitting electrocatalysis in acid conditions using ruthenate-iridate pyrochlores. Angew Chem Int Ed 53(41):10960–10964.  https://doi.org/10.1002/anie.201406668 CrossRefGoogle Scholar
  10. 10.
    Cherevko S, Geiger S, Kasian O, Mingers A, Mayrhofer KJJ (2016) Oxygen evolution activity and stability of iridium in acidic media. J Electroanal Chem 773:69–78.  https://doi.org/10.1016/j.jelechem.2016.04.033 CrossRefGoogle Scholar
  11. 11.
    Zheng Y, Jiao Y, Zhu Y, Cai Q, Vasileff A, Li LH, Han Y, Chen Y, Qiao S-Z (2017) Molecule-level g-C3N4 coordinated transition metals as a new class of electrocatalysts for oxygen electrode reactions. J Am Chem Soc 139(9):3336–3339.  https://doi.org/10.1021/jacs.6b13100 CrossRefPubMedGoogle Scholar
  12. 12.
    Wan S, Qi J, Zhang W, Wang W, Zhang S, Liu K, Zheng H, Sun J, Wang S, Cao R (2017) Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation. Adv Mater 29(28):1700286.  https://doi.org/10.1002/adma.201700286 CrossRefGoogle Scholar
  13. 13.
    Tung C-W, Hsu Y-Y, Shen Y-P, Zheng Y, Chan T-S, Sheu H-S, Cheng Y-C, Chen HM (2015) Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat Commun 6:8106.  https://doi.org/10.1038/ncomms9106 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Wang H, Lee H-W, Deng Y, Lu Z, Hsu P-C, Liu Y, Lin D, Cui Y (2015) Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat Commun 6:7261.  https://doi.org/10.1038/ncomms8261 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Chang SH, Danilovic N, Chang K-C, Subbaraman R, Paulikas AP, Fong DD, Highland MJ, Baldo PM, Stamenkovic VR, Freeland JW, Eastman JA, Markovic NM (2014) Functional links between stability and reactivity of strontium ruthenate single crystals during oxygen evolution. Nat Commun 5:4191.  https://doi.org/10.1038/ncomms5191 CrossRefPubMedGoogle Scholar
  16. 16.
    Diaz-Morales O, Raaijman S, Kortlever R, Kooyman PJ, Wezendonk T, Gascon J, Fu WT, Koper MTM (2016) Iridium-based double perovskites for efficient water oxidation in acid media. Nat Commun 7:12363.  https://doi.org/10.1038/ncomms12363 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Seitz LC, Dickens CF, Nishio K, Hikita Y, Montoya J, Doyle A, Kirk C, Vojvodic A, Hwang HY, Norskov JK, Jaramillo TF (2016) A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353(6303):1011–1014.  https://doi.org/10.1126/science.aaf5050 CrossRefPubMedGoogle Scholar
  18. 18.
    Kim J, Shih P-C, Tsao K-C, Pan Y-T, Yin X, Sun C-J, Yang H (2017) High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media. J Am Chem Soc 139(4):12076–12083.  https://doi.org/10.1021/jacs.7b06808 CrossRefPubMedGoogle Scholar
  19. 19.
    Bloor LG, Molina PI, Symes MD, Cronin L (2014) Low pH electrolytic water splitting using earth-abundant metastable catalysts that self-assemble in situ. J Am Chem Soc 136(8):3304–3311.  https://doi.org/10.1021/ja5003197 CrossRefPubMedGoogle Scholar
  20. 20.
    Huynh M, Bediako DK, Nocera DG (2014) A functionally stable manganese oxide oxygen evolution catalyst in acid. J Am Chem Soc 136(16):6002–6010.  https://doi.org/10.1021/ja413147e CrossRefPubMedGoogle Scholar
  21. 21.
    Mondschein JS, Callejas JF, Read CG, Chen JYC, Holder CF, Badding CK, Schaak RE (2016) Crystalline cobalt oxide films for sustained electrocatalytic oxygen evolution under strongly acidic conditions. Chem Mater 29(3):950–957.  https://doi.org/10.1021/acs.chemmater.6b02879 CrossRefGoogle Scholar
  22. 22.
    Roger I, Shipman MA, Symes MD (2017) Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat Rev Chem 1:0003.  https://doi.org/10.1038/s41570-016-0003 CrossRefGoogle Scholar
  23. 23.
    Lu X, Yim W-L, Suryanto BHR, Zhao C (2015) Electrocatalytic oxygen evolution at surface-oxidized multiwall carbon nanotubes. J Am Chem Soc 137(8):2901–2907.  https://doi.org/10.1021/ja509879r CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang J, Zhang C, Sha J, Fei H, Li Y, Tour JM (2017) Efficient water-splitting electrodes based on laser-induced graphene. ACS Appl Mater Interfaces 9(32):26840–26847.  https://doi.org/10.1021/acsami.7b06727 CrossRefPubMedGoogle Scholar
  25. 25.
    Tang C, Wang H-F, Chen X, Li B-Q, Hou T-Z, Zhang B, Zhang Q, Titirici M-M, Wei F (2016) Topological Defects in metal-free nanocarbon for oxygen electrocatalysis. Adv Mater 28(32):6845–6851.  https://doi.org/10.1002/adma.201601406 CrossRefPubMedGoogle Scholar
  26. 26.
    Li X, Fang Y, Zhao S, Wu J, Li F, Tian M, Long X, Jin J, Ma J (2016) Nitrogen-doped mesoporous carbon nanosheet/carbon nanotube hybrids as metal-free bi-functional electrocatalysts for water oxidation and oxygen reduction. J Mater Chem A 4(34):13133–13141.  https://doi.org/10.1039/C6TA04187F CrossRefGoogle Scholar
  27. 27.
    Wang W, Luo J, Chen S (2017) Carbon oxidation reactions could misguide the evaluation of carbon black-based oxygen-evolution electrocatalysts. Chem Commun 53:11556–11559.  https://doi.org/10.1039/C7CC04611A CrossRefGoogle Scholar
  28. 28.
    Pérez-Rodríguez S, Sebastián D, Lázaro MJ, Pastor E (2017) Stability and catalytic properties of nanostructured carbons in electrochemical environments. J Catal 355:156–166.  https://doi.org/10.1016/j.jcat.2017.09.019 CrossRefGoogle Scholar
  29. 29.
    Ashton SJ, Arenz M (2012) Comparative DEMS study on the electrochemical oxidation of carbon blacks. J Power Sources 217:392–399.  https://doi.org/10.1016/j.jpowsour.2012.06.015 CrossRefGoogle Scholar
  30. 30.
    Zhang Y-X, Guo X, Zhai X, Yan Y-M, Sun K-N (2015) Diethylenetriamine (DETA)-assisted anchoring of Co3O4 nanorods on carbon nanotubes as efficient electrocatalysts for the oxygen evolution reaction. J Mater Chem A 3(4):1761–1768.  https://doi.org/10.1039/C4TA04641B CrossRefGoogle Scholar
  31. 31.
    Lu X, Zhao C (2013) Highly efficient and robust oxygen evolution catalysts achieved by anchoring nanocrystalline cobalt oxides onto mildly oxidized multiwalled carbon nanotubes. J Mater Chem A 1(39):12053–12059.  https://doi.org/10.1039/C3TA12912H CrossRefGoogle Scholar
  32. 32.
    Yu P, O’Keefe TJ (1999) Evaluation of lead anode reactions in acid sulfate electrolytes. J Electrochem Soc 146(4):1361–1369.  https://doi.org/10.1149/1.1391771 CrossRefGoogle Scholar
  33. 33.
    Maksymiuk K, Stroka J, Galus Z (2009) Chemistry, electrochemistry, and electrochemical applications. Elsevier, Amsterdam, pp 762–771.  https://doi.org/10.1016/B978-044452745-5.00898-4 CrossRefGoogle Scholar
  34. 34.
    Watanabe T (2004) Film formation mechanism in electrodeposition. In: Watanabe T (ed) Nano plating. Elsevier, Oxford, pp 95–139.  https://doi.org/10.1016/B978-008044375-1/50011-7 CrossRefGoogle Scholar
  35. 35.
    Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8):1731–1742.  https://doi.org/10.1016/j.carbon.2005.02.018 CrossRefGoogle Scholar
  36. 36.
    Reid ES, Cooney RP, Hendra PJ, Fleischmann M (1977) A raman spectroscopic study of corrosion of lead electrodes in aqueous chloride media. J Electroanal Chem Interfacial Electrochem 80(2):405–408.  https://doi.org/10.1016/S0022-0728(77)80063-6 CrossRefGoogle Scholar
  37. 37.
    Yang CJ, Park S-M (2013) Electrochemical behavior of PbO2 nanowires array anodes in a zinc electrowinning solution. Electrochim Acta 108(1):86–94.  https://doi.org/10.1016/j.electacta.2013.06.068 CrossRefGoogle Scholar
  38. 38.
    Inguanta R, Piazza S, Sunseri C (2008) Growth and characterization of ordered PbO2 nanowire arrays. J Electrochem Soc 155(12):K205–K210.  https://doi.org/10.1149/1.2988728 CrossRefGoogle Scholar
  39. 39.
    Jaimes R, Miranda-Hernández M, Lartundo-Rojas L, González I (2015) Characterization of anodic deposits formed on Pb–Ag electrodes during electrolysis in mimic zinc electrowinning solutions with different concentrations of Mn(II). Hydrometallurgy 156:53–62.  https://doi.org/10.1016/j.hydromet.2015.05.008 CrossRefGoogle Scholar
  40. 40.
    Da Silva LM, De Faria LA, Boodts JFC (2003) Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency. Electrochim Acta 48(6):699–709.  https://doi.org/10.1016/S0013-4686(02)00739-9 CrossRefGoogle Scholar
  41. 41.
    Zhang C, Duan N, Jiang L, Xu F, Luo J (2018) Influence of Mn2+ ions on the corrosion mechanism of lead-based anodes and the generation of heavy metal anode slime in zinc sulfate electrolyte. Environ Sci Pollut Res 25(12):11958–11969.  https://doi.org/10.1007/s11356-018-1443-2 CrossRefGoogle Scholar
  42. 42.
    Gerken JB, McAlpin JG, Chen JYC, Rigsby ML, Casey WH, Britt RD, Stahl SS (2011) Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J Am Chem Soc 133(36):14431–14442.  https://doi.org/10.1021/ja205647m CrossRefPubMedGoogle Scholar
  43. 43.
    McCrory CCL, Jung S, Peters JC, Jaramillo TF (2013) Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J Am Chem Soc 135(45):16977–16987.  https://doi.org/10.1021/ja407115p CrossRefPubMedGoogle Scholar
  44. 44.
    Marshall AT, Vaisson-Béthune L (2015) Avoid the quasi-equilibrium assumption when evaluating the electrocatalytic oxygen evolution reaction mechanism by Tafel slope analysis. Electrochem Commun 61:23–26.  https://doi.org/10.1016/j.elecom.2015.09.019 CrossRefGoogle Scholar
  45. 45.
    Hsu CH, Mansfeld F (2001) Concerning the conversion of the constant phase element parameter Y0 into a capacitance. Corrosion 57(9):747–748.  https://doi.org/10.5006/1.3280607 CrossRefGoogle Scholar
  46. 46.
    Mulder WH, Sluyters JH, Pajkossy T, Nyikos L (1990) Tafel current at fractal electrodes: connection with admittance spectra. J Electroanal Chem Interfacial Electrochem 285(1–2):103–115.  https://doi.org/10.1016/0022-0728(90)87113-x CrossRefGoogle Scholar
  47. 47.
    McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF (2015) Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc 137(13):4347–4357.  https://doi.org/10.1021/ja510442p CrossRefPubMedGoogle Scholar
  48. 48.
    Mindt W (1969) Electrical properties of electrodeposited PbO2 films. J Electrochem Soc 116(8):1076–1080.  https://doi.org/10.1149/1.2412217 CrossRefGoogle Scholar
  49. 49.
    Xu F, Lu Q, Ye L, Tsang E (2017) Intermix of metal nanoparticles-single wall carbon nanotubes. Chem Commun 53:7653–7656.  https://doi.org/10.1039/C7CC03696E CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations