Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 2, pp 135–150 | Cite as

Effect of plasma power on the semiconducting behavior of low-frequency PECVD TiO2 and nitrogen-doped TiO2 anodic thin coatings: photo-electrochemical studies in a single compartment cell for hydrogen generation by solar water splitting

  • Loraine Youssef
  • Stéphanie RoualdèsEmail author
  • Joëlle Bassil
  • Mirvat Zakhour
  • Vincent Rouessac
  • Claude Lamy
  • Michel Nakhl
Research Article
Part of the following topical collections:
  1. Solar Cells

Abstract

Previously optimized anatase and nitrogen-doped anatase TiO2 coatings have been grown by low-frequency plasma-enhanced chemical vapor deposition (PECVD) on different kinds of substrates at low plasma power (64 W) and high plasma power (100 W) for photo-electrochemical studies. Nitrogen-doped TiO2 layers exhibit better photoactivity and also higher electronic conductivity under UV and visible irradiations than non-doped materials. The main reason is that nitrogen introduction induces TiO2 band gap tailoring towards higher wavelengths. In addition, films prepared at low plasma power present a ‘typical photo-material’ behavior (whose activity depends directly on the presence of light) while layers synthesized at higher plasma power contain an initial conductive phase giving them an activity that exists in the dark yet and can be slightly enhanced by illumination. Such conclusions are prominent in the field of photo-anodic thin films; indeed PECVD could constitute a promising approach for tailoring the efficiency of photo-electrochemical cells for hydrogen production under solar light.

Graphical abstract

Keywords

Anatase Nitrogen doping PECVD Plasma power Photo-electrochemistry Hydrogen 

Notes

Acknowledgements

This project has been funded with support from Lebanese University (UL) in collaboration with AZM&SAADÉ foundation. We also thank Arie VAN DER LEE (IEM, Montpellier) for XRR analysis, Didier COT (IEM, Montpellier) for SEM observations, and Valérie FLAUD (ICGM, Montpellier) for thin films profile investigation by XPS.

References

  1. 1.
    Ribeiro H (2002) Fossil fuel energy impacts on health. Encycl Life Support Syst 1–9Google Scholar
  2. 2.
    Princen T, Manno J, Martin P (2015) The fossil fuel problem. In: Ending of fossil fuels era, pp 3–97Google Scholar
  3. 3.
    Holtsmark B (2015) A comparison of the global warming effects of wood fuels and fossil fuels taking albedo into account. GCB Bioenergy 7:984–997.  https://doi.org/10.1111/gcbb.12200 CrossRefGoogle Scholar
  4. 4.
    Scientists U of C (2016) The hidden costs of fossil fuels. In: Science for a healthy planet and safer worldGoogle Scholar
  5. 5.
    Chauhan NS, Singh VK (2015) Fundamentals and use of hydrogen as a fuel. J Mech Eng 6:63–68Google Scholar
  6. 6.
    Jechura J (2015) Hydrogen from natural gas via steam methane reforming (SMR)Google Scholar
  7. 7.
    Raggio G, Pettinau A, Orsini A et al (2005) Coal gasification pilot plant for hydrogen production. Part A: coal gasification and syngas desulphurization. In: Second international conference on clean coal technology our futureGoogle Scholar
  8. 8.
    Deiana P, Pettinau A, Tola V (2007) Hydrogen production from coal gasification in updraft gasifier with syngas treatment lineGoogle Scholar
  9. 9.
    Lensa W, Von, Verfondern K (2010) Coal gasification for hydrogen production using nuclear energy coal gasification for hydrogen production using nuclear energy. In: 18th World hydrogen energy conference, pp 191–198Google Scholar
  10. 10.
    Lan R, Jin H, Guo L et al (2014) Hydrogen production by catalytic gasification of coal in supercritical water. Energy Fuels 28:6911–6917CrossRefGoogle Scholar
  11. 11.
    Van Niel EW (2016) Biological processes for hydrogen production. Adv Biochem Eng Biotechnol 156:155–193Google Scholar
  12. 12.
    Orozco-Pulido R (2011) Hydrogen production from biomass by integrating thermo-chemical and biological processesGoogle Scholar
  13. 13.
    Loubette N, Junker M, Jacques R, Forbach C (2006) State of the art of biological hydrogen production processesGoogle Scholar
  14. 14.
    Das D, Veziroǧlu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28CrossRefGoogle Scholar
  15. 15.
    Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934CrossRefGoogle Scholar
  16. 16.
    Kasai S (2014) Hydrogen electrical energy storage by high-temperature steam electrolysis for next-millennium energy security. Int J Hydrogen Energy 39:21358–21370CrossRefGoogle Scholar
  17. 17.
    Rashid MM, Al Mesfer MK, Naseem H, Danish M (2015) Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int J Eng Adv Technol 4:2249–8958Google Scholar
  18. 18.
    Bhandari R, Trudewind CA, Zapp P (2014) Life cycle assessment of hydrogen production via electrolysis e a review. J Clean Prod 85:151–163.  https://doi.org/10.1016/j.jclepro.2013.07.048 CrossRefGoogle Scholar
  19. 19.
    Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38CrossRefGoogle Scholar
  20. 20.
    Kennedy JH, Frese K (1978) Photo-oxidation of water at a-Fe2O3 electrodes. J Electrochem Soc 125:709–714CrossRefGoogle Scholar
  21. 21.
    Butler MA (1977) Photoelectrolysis and physical properties of the semiconducting electrode WO2. J Appl Phys 48:1914CrossRefGoogle Scholar
  22. 22.
    Youssef L, Kinfack Leoga AJ, Roualdes S et al (2017) Optimization of N-doped TiO2 multifunctional thin layers by low frequency PECVD process. J Eur Ceram Soc 37:5289–5303.  https://doi.org/10.1016/j.jeurceramsoc.2017.05.010 CrossRefGoogle Scholar
  23. 23.
    Fountaine K, Lewerenz HJ, Atwater H (2016) Efficiency limits for electrochemical water splitting. Nat Commun 7:13706CrossRefGoogle Scholar
  24. 24.
    Duan J, Chen S, Zhao C (2017) Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun 8:15341CrossRefGoogle Scholar
  25. 25.
    Swierk J, Hernandez D, McCool N et al (2015) Metal-free organic sensitizers for use in water splitting dye sensitized photoelectrochemical cells. Proc Natl Acad Sci USA 112:1681–1686CrossRefGoogle Scholar
  26. 26.
    Cohen A (1910) Studien über photochemische Gleichgewichte IV Das Ligchtgleichgewicht Knallgas-Wasserdampf. Berichte der Dtsch Chem Gesellschaft 43:880CrossRefGoogle Scholar
  27. 27.
    Chovet A, Masson P (2007) Cours de physique des semi-conducteursGoogle Scholar
  28. 28.
    Ngô C, Ngô H (2012) Physique des semi-conducteursGoogle Scholar
  29. 29.
    Ma G, Domen K, Hisatomi T (2015) Semiconductors for photocatalytic and photoelectrochemical solar water splitting. In: From molecules to materials. pp 1–56Google Scholar
  30. 30.
    Würfel P, Würfel U (2016) From basic principles to advanced conceptsGoogle Scholar
  31. 31.
    McKevoy A, Markvart T, Castaner L (2013) Materials, manufacture and operation. Sol Cells 1–615Google Scholar
  32. 32.
    Ajmal A, Majeed I, Malik R et al (2014) Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview. RSC Adv 4:37003–37026CrossRefGoogle Scholar
  33. 33.
    Tayade RJ, Surolia PK, Kulkarni RG, Jasra RV (2007) Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci Technol Adv Mater 8:455–462CrossRefGoogle Scholar
  34. 34.
    Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. J Mol Catal A Chem 238Google Scholar
  35. 35.
    Grätzel M (2001) Photoelectrochemical cells. Nature 414:338–343CrossRefGoogle Scholar
  36. 36.
    Liu B, Zhao X, Terashima C et al (2014) Thermodynamic and kinetic analysis of heterogeneous photocatalysis for semiconductor systems. Phys Chem Chem Phys 16:8751CrossRefGoogle Scholar
  37. 37.
    Zhou M (2015) Novel photocatalytic TiO2-based porous membranes prepared by plasma-enhanced chemical vapor deposition (PECVD) for organic pollutant degradation in waterGoogle Scholar
  38. 38.
    Cho HJ, Hwang PG, Jung D (2011) Preparation and photocatalytic activity of nitrogen-doped TiO2 hollow nanospheres. J Phys Chem Solids 72:1462–1466.  https://doi.org/10.1016/j.jpcs.2011.08.026 CrossRefGoogle Scholar
  39. 39.
    Guimond S, Schütz U, Hanselmann B et al (2011) Influence of gas phase and surface reactions on plasma polymerization. Surf Coatings Technol 205:S447–S450.  https://doi.org/10.1016/j.surfcoat.2010.08.131 CrossRefGoogle Scholar
  40. 40.
    Nurfani E, Kurniawan R, Muhammady S et al (2016) Effect of Ta concentration on the refractive index of TiO2:Ta studied by spectroscopic ellipsometry. AIP Conf Proc 1725:1–4Google Scholar
  41. 41.
    Liu H-Y, Hsu Y-L, Su H-Y et al (2018) A comparative study of amorphous, anatase, rutile, and mixed phase TiO2 films by mist chemical vapor deposition and ultraviolet photodetectors applications. IEEE Sens J 1748:1–1.  https://doi.org/10.1109/JSEN.2018.2819700 Google Scholar
  42. 42.
    Woo S-H, Hwangbo CK (2006) Optical anisotropy of microstructure-controlled TiO2 films fabricated by glancing-angle deposition (GLAD). J Korean Phys Soc 48:1199–1204Google Scholar
  43. 43.
    Lazzarelli HN (2010) Blue chart gem identificationGoogle Scholar
  44. 44.
    Lee A, Van Der (2013) Diffusion, diffraction, réflectométrie et fluorescence de rayons-X à la PAC. In: International year of crystallography, pp 1–35Google Scholar
  45. 45.
    Chen H, Nambu A, Graciani J et al (2007) Reaction of NH3 with Titania: N-doping of the oxide and TiN formation. J Phys Chem C 111:1366–1372CrossRefGoogle Scholar
  46. 46.
    Swihart MT, Allendorf MD, Meyyapan M (2001) Process control, diagnostics, and modeling in semiconductor manufacturing IV. In: Fundamental gas-phase and surface chemistry of vapor-phase deposition II. pp 1–496Google Scholar
  47. 47.
    Rahul M (2010) Photoelectrochemical (PEC) and electrical studies on tungsten and molybdenum heteropolyoxometalate thin filmsGoogle Scholar
  48. 48.
    Muhibbullah M, Abdel Haleem A (2015) Estimation of the open circuit voltage of a pn junction based on photo-electrochemical measurements. Trans Mater Res Soc Japan 40:247–252CrossRefGoogle Scholar
  49. 49.
    Muhibbullah M, Golam Mowla Choudhury M, Mominuzzaman SM (2012) An equation of the width of the depletion layer for a step heterojunction. Trans Mater Res Soc Japan 37:405–408CrossRefGoogle Scholar
  50. 50.
    Jie H, Song-Tao W, Xiao-Li C et al (2004) Photoelectrochemical characteristics of nano-titanium dioxide thin films prepared by RF magnetron sputtering. Acta Phys Chim Sin 20:1191–1195Google Scholar
  51. 51.
    Ji Y, Guo W, Chen H et al (2015) Surface Ti3+/ Ti4+ redox shuttle enhancing photocatalytic H2 production in ultrathin TiO2 nanosheets/CdSe quantum dots. J Phys Chem C 119:27053–27059CrossRefGoogle Scholar
  52. 52.
    Qiu M, Tian Y, Chen Z et al (2016) Synthesis of Ti3+ self-doped TiO2 nanocrystals based on Le Chatelier’s principle and their application in solar light photocatalysis. RSC Adv 78:74376–74383CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Loraine Youssef
    • 1
    • 2
  • Stéphanie Roualdès
    • 1
    Email author
  • Joëlle Bassil
    • 2
  • Mirvat Zakhour
    • 2
  • Vincent Rouessac
    • 1
  • Claude Lamy
    • 1
  • Michel Nakhl
    • 2
  1. 1.Institut Européen des MembranesIEM – UMR 5635, ENSCM, CNRS, Univ MontpellierMontpellierFrance
  2. 2.Laboratoire Chimie-Physique des Matériaux and Platform of Research in Nanosciences and Nanotechnology, Lebanese UniversityFanar-Jdeidet el MetnLebanon

Personalised recommendations