Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 2, pp 111–118 | Cite as

Enhancing the electrochemical performance of lithium sulfur batteries using cetyl trimethylammonium bromide coated separator

  • Sung Ho Cho
  • Sung Man Cho
  • Ki Yoon Bae
  • Byung Hyuk Kim
  • Byung Dae Son
  • Woo Young YoonEmail author
Research Article
  • 92 Downloads
Part of the following topical collections:
  1. Batteries

Abstract

In this study, cetyltrimethylammonium bromide (CTAB)-modified separator is developed by using a simple and facile method for lithium–sulfur (Li–S) batteries. CTAB is coated on only one side of separator using a doctor blade. The coated CTAB on the separator improves wettability between separator and electrolyte and ionic conductivity of separator. In addition, CTAB also inhibits the migration of dissolved polysulfides to the anode side. These phenomena improve the electrochemical properties of Li–S batteries using CTAB-coated separators. Cells using the CTAB-coated separator exhibit an initial capacity of 1136 mAh g−1 at 0.2 C-rate. In addition, they can maintain a higher capacity (765 mAh g−1) and capacity retention rate (67.3%) after 150 cycles as compared to pristine Li–S batteries (549 mAh g−1 and 48.5%, respectively). These results indicate that the CTAB-coated separator can enhance the performance of Li–S batteries.

Graphical abstract

Keywords

Li–S battery Cetyltrimethylammonium bromide Separator modification CTAB-coated separator 

Notes

Acknowledgements

This study was supported by grants from the National Research Foundation of Korea (NRF), the Korean government (MEST) (2016R1A2B3009481). SEM and EDS examination were performed at the Korea Basic Science Institute, Seoul Center.

Supplementary material

10800_2018_1262_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 194 KB)

References

  1. 1.
    Bresser D, Passerini S, Scrosati B (2013) Recent progress and remaining challenges in sulfur-based lithium secondary batteries—a review. Chem Commun 49:10545–10562.  https://doi.org/10.1039/c3cc46131a CrossRefGoogle Scholar
  2. 2.
    Yin Y, Xin S, Guo Y, Wan L (2013) Lithium–sulfur batteries: electrochemistry, materials, and prospects. Angew Chem Int Ed 52:13186–13200.  https://doi.org/10.1002/anie.201304762 CrossRefGoogle Scholar
  3. 3.
    Manthiram A, Fu Y, Chung S, Zu C, Su Y (2014) Rechargeable lithium–sulfur batteries. Chem Rev 114:11751–11787.  https://doi.org/10.1021/cr500062v CrossRefGoogle Scholar
  4. 4.
    Zhang F, Zhang X, Dong Y, Wang L (2012) Facile and effective synthesis of reduced graphene oxide encapsulated sulfur via oil/water system for high performance lithium sulfur cells. J Mater Chem 22:11452–11454.  https://doi.org/10.1039/c2jm16543k Google Scholar
  5. 5.
    Jayaprakash N, Shen J, Moganty SS, Corona A, Archer LA (2011) Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries. Angew Chem 123:6026–6030.  https://doi.org/10.1002/ange.201100637 CrossRefGoogle Scholar
  6. 6.
    Zhang SS (2013) Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions. J Power Sources 231:153–162.  https://doi.org/10.1016/j.jpowsour.2012.12.1027 CrossRefGoogle Scholar
  7. 7.
    Guo J, Xu Y, Wang C (2011) Sulfur-impregnated disordered carbon nanotubes cathode for lithium sulfur batteries. Nano Lett 11:4288–4294.  https://doi.org/10.1021/nl202297p CrossRefGoogle Scholar
  8. 8.
    Lee J, Choi W (2015) Surface modification of sulfur cathodes with PEDOT:PSS conducting polymer in lithium–sulfur batteries. J Electrochem Soc 162(6):A935–A939.  https://doi.org/10.1149/2.0651506jes CrossRefGoogle Scholar
  9. 9.
    Wu F, Wu S, Chen R, Chen J, Chen S (2010) Sulfur-polythiophene composite cathode materials for rechargeable lithium batteries. Electrochem Solid State Lett 13(4):A29–A31.  https://doi.org/10.1149/1.3290668 CrossRefGoogle Scholar
  10. 10.
    Zhao S, Li C, Wang W, Zhang H, Gao M, Xiong X, Wang A, Yuan K, Huang Y, Wang F (2013) A novel porous nanocomposite of sulfur/carbon obtained from fish scales for lithium–sulfur batteries. J Mater Chem A 1:3334–3339.  https://doi.org/10.1039/c3ta01220d CrossRefGoogle Scholar
  11. 11.
    Tao X, Chen X, Xia Y, Huang H, Gan Y, Wu R, Chen F, Zhang W (2013) Highly mesoporous carbon foams synthesized by a facile, cost-effective and template-free Pechini method for advanced lithium–sulfur batteries. J Mater Chem A 1:3295–3301.  https://doi.org/10.1039/c2ta01213h CrossRefGoogle Scholar
  12. 12.
    Zhang B, Qin X, Li GR, Gao XP (2010) Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres. Energy Environ Sci 3:1531–1537.  https://doi.org/10.1039/c002639e CrossRefGoogle Scholar
  13. 13.
    Liang C, Dudney NJ, Howe JY (2009) Hierarchically structured sulfur/carbon nanocomposite material for high-energy lithium battery. Chem Mater 21:4724–4730.  https://doi.org/10.1021/cm902050j CrossRefGoogle Scholar
  14. 14.
    Yang G, Tan J, Jin H, Kim YH, Yang X, Son DH, Ahn S, Zhou H, Yu C (2018) Creating effective nanoreactors on carbon nanotubes with mechanochemical treatments for high-areal-capacity sulfur cathodes and lithium anodes. Adv Funct Mater 28:1800595.  https://doi.org/10.1002/adfm.201800595 CrossRefGoogle Scholar
  15. 15.
    Huang J, Zhang Q, Wei F (2015) Multi-functional separator/interlayer system for high-stable lithium–sulfur batteries: progress and prospects. Energy Storage Mater 1:127–145.  https://doi.org/10.1016/j.ensm.2015.09.008 CrossRefGoogle Scholar
  16. 16.
    Zhang Z, Lai Y, Zhang Z, Zhang K, Li J (2014) Al2O3-coated porous separator for enhanced electrochemical performance of lithium sulfur batteries. Electrochim Acta 129:55–61.  https://doi.org/10.1016/j.electacta.2014.02.077 CrossRefGoogle Scholar
  17. 17.
    Jin Z, Xie K, Hong X, Hu Z, Liu X (2012) Application of lithiated Nafion ionomer film as functional separator for lithium sulfur cells. J Power Sources 218:163–167.  https://doi.org/10.1016/j.jpowsour.2012.06.100 CrossRefGoogle Scholar
  18. 18.
    Shi L, Zeng F, Cheng X, Lam KH, Wang W, Wang A, Jin Z, Wu F, Yang Y (2018) Enhanced performance of lithium–sulfur batteries with high sulfur loading utilizing ion selective MWCNT/SPANI modified separator. Chem Eng J 334:305–312.  https://doi.org/10.1016/j.cej.2017.08.015 CrossRefGoogle Scholar
  19. 19.
    Zeng P, Huang L, Zhang X, Han Y, Chen Y (2018) Inhibiting polysulfides diffusion of lithium–sulfur batteries using an acetylene black-CoS2 modified separator: mechanism research and performance improvement. Appl Surf Sci 427:242–252.  https://doi.org/10.1016/j.apsusc.2017.08.062 CrossRefGoogle Scholar
  20. 20.
    Deng N, Kang W, Liu Y, Ju J, Wu D, Li L, Hassan BS, Cheng B (2016) A review on separators for lithiumsulfur battery: progress and prospects. J Power Sources 331:132–155.  https://doi.org/10.1016/j.jpowsour.2016.09.044 CrossRefGoogle Scholar
  21. 21.
    Gan L, Lu Z, Cao D, Chen Z (2018) Effects of cetyltrimethylammonium bromide on the morphology of green synthesized Fe3O4 nanoparticles used to remove phosphate. Mater Sci Eng C 82:41–45.  https://doi.org/10.1016/j.msec.2017.08.073 CrossRefGoogle Scholar
  22. 22.
    Hou Y, Abdullah H, Kuo D, Leu S, Gultom NS, Su C (2018) A comparison study of SiO2/nano metal oxide composite sphere for antibacterial application. Composites B 133:166–176.  https://doi.org/10.1016/j.compositesb.2017.09.021 CrossRefGoogle Scholar
  23. 23.
    Chen W, Lei T, Lv W, He W, Wu C, Liu X, Liu J, Chen B, Yan C, Xiong J (2018) A new hydrophilic binder enabling strongly anchoring polysulfides for high-performance sulfur electrodes in lithium–sulfur battery. Adv Energy Mater 8:1702889.  https://doi.org/10.1002/aenm.201702889 CrossRefGoogle Scholar
  24. 24.
    Abbas SA, Ibrahem MA, Hu L, Lin C, Fang J, Boopathi KM, Wang P, Li L, Chu C (2016) Bifunctional separator as a polysulfide mediator for highly stable Li–S batteries. J Mater Chem A 4:9661–9669.  https://doi.org/10.1039/c6ta02272c CrossRefGoogle Scholar
  25. 25.
    Zhang Z, Lai Y, Zhang Z, Li J (2015) A functional carbon layer-coated separator for high performance lithium sulfur batteries. Solid State Ion 278:166–171.  https://doi.org/10.1016/j.ssi.2015.06.018 CrossRefGoogle Scholar
  26. 26.
    Gutiérrez-Becerra A, Barcena-Soto M, Soto V, Arellano-Ceja J, Casillas N, Prévost S, Noirez L, Gradzielski M, Escalante JI (2012) Structure of reverse microemulsion-templated metal hexacyanoferrate nanoparticles. Nanoscale Res Lett 7:83.  https://doi.org/10.1186/1556-276X-7-83 CrossRefGoogle Scholar
  27. 27.
    Nithiyanantham U, Ramadoss A, Kundu S (2014) Supercapacitor and dye-sensitized solar cell (DSSC) applications of shape-selective TiO2 nanostructures. RSC Adv 4:35659–35672.  https://doi.org/10.1039/c4ra06226d CrossRefGoogle Scholar
  28. 28.
    Viana RB, da Silva ABF, Pimentel AS (2012) Infrared spectroscopy of anionic, cationic, and zwitterionic surfactants. Adv Phys Chem 2012:903272.  https://doi.org/10.1155/2012/903272 CrossRefGoogle Scholar
  29. 29.
    Barhoum A, Lokeren LV, Rahier H, Dufresne A, Assche GV (2015) Roles of in situ surface modification in controlling the growth and crystallization of CaCO3 nanoparticles, and their dispersion in polymeric materials. J Mater Sci 50:7908–7918.  https://doi.org/10.1007/s10853-015-9327-z CrossRefGoogle Scholar
  30. 30.
    Foster EL, Tria MCR, Pernites RB, Addison SJ, Advincula RC (2012) Patterned polymer brushes via electrodeposited ATRP, ROMP, and RAFT initiators on colloidal template arrays. Soft Mater 8:353–359.  https://doi.org/10.1039/C1SM06406A CrossRefGoogle Scholar
  31. 31.
    Prasanna K, Kim C, Lee CW (2014) Effect of SiO2 coating on polyethylene separator with different stretching ratios for application in lithium ion batteries. Mater Chem Phys 146:545–550.  https://doi.org/10.1016/j.matchemphys.2014.04.014 CrossRefGoogle Scholar
  32. 32.
    Li GC, Jing HK, Su Z, Lai C, Chen L, Yuan CC, Li HH, Liu L (2015) A hydrophilic separator for high performance lithium sulfur batteries. J Mater Chem A 3:11014–11020.  https://doi.org/10.1039/c5ta01970b CrossRefGoogle Scholar
  33. 33.
    Wenzel RN (1936) Resistance of solid surfaces to wetting by water. Ind Eng Chem 28(8):988–994.  https://doi.org/10.1021/ie50320a024 CrossRefGoogle Scholar
  34. 34.
    Carbone L, Coneglian T, Gobet M, Munoz S, Devany M, Greenbaum S, Hassoun J (2018) A simple approach for making a viable, safe, and high-performances lithium sulfur battery. J Power Sources 377:26–35.  https://doi.org/10.1016/j.jpowsour.2017.11.079 CrossRefGoogle Scholar
  35. 35.
    Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium–sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11:2644–2647.  https://doi.org/10.1021/nl200658a CrossRefGoogle Scholar
  36. 36.
    Pu J, Shen Z, Zheng J, Wub W, Zhu C, Zhou Q, Zhang H, Pan F (2017) Multifunctional Co3S4@sulfur nanotubes for enhanced lithium–sulfur battery performance. Nano Energy 37:7–14.  https://doi.org/10.1016/j.nanoen.2017.05.009 CrossRefGoogle Scholar
  37. 37.
    Peng H, Wang D, Huang J, Cheng X, Yuan Z, Wei F, Zhang Q (2016) Janus separator of polypropylene-supported cellular graphene framework for sulfur cathodes with high utilization in lithium–sulfur batteries. Adv Sci 3:1500268.  https://doi.org/10.1002/advs.20150026 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  • Sung Ho Cho
    • 1
  • Sung Man Cho
    • 1
  • Ki Yoon Bae
    • 1
  • Byung Hyuk Kim
    • 1
  • Byung Dae Son
    • 1
  • Woo Young Yoon
    • 1
    Email author
  1. 1.Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea

Personalised recommendations