Advertisement

Journal of Applied Electrochemistry

, Volume 49, Issue 2, pp 163–177 | Cite as

Electrodeposited zinc phosphate hydrate electrodes for electrocatalytic applications

  • A. Chennah
  • Y. Naciri
  • A. Taoufyq
  • B. Bakiz
  • L. Bazzi
  • F. Guinneton
  • S. Villain
  • J. R. Gavarri
  • A. BenlhachemiEmail author
Research Article
  • 48 Downloads
Part of the following topical collections:
  1. Electrodeposition

Abstract

Zinc phosphate hydrate Zn3(PO4)2·4H2O thin films were deposited making use of chronoamperometric mode, on three types of substrates: fluorine-doped tin oxide (FTO) on glass, stainless steel, and titanium. The precursors were solutions in aqueous medium of Zn(NO3)2·6H2O and NH4H2PO4. The effects of various parameters (concentrations of starting precursors, nature of substrates) on the properties of electrodeposited films were analyzed. The films were characterized by X-ray diffraction, scanning electron microscopy, Raman spectroscopy, and electrochemical cyclic voltammetry. The material Zn3(PO4)2·4H2O, electrodeposited on the three different substrates to form three types of anodes, crystallized in the orthorhombic structure of hopeite β. The first determinations of the electrocatalytic degradation of rhodamine B (RhB) were performed using the three types of anodes. The RhB degradation was followed by UV–Visible spectrophotometry and also by chemical oxygen demand: it was found that the best degradation was obtained on FTO substrate.

Graphical abstract

Keywords

Zinc phosphate hydrate Electrodeposition Chronopotentiometry Electrocatalysis Electrodegradation Rhodamine B 

Notes

Acknowledgements

This work was carried out in the framework of the PPR project financed by the CNRST under number PPR/2015/32.

References

  1. 1.
    Robertson L, Gaudon M, Pechev S, Demourgues A (2012) Structural transformation and thermochromic behavior of Co2+-doped Zn3(PO4)2.4H2O hopeites. J Mater Chem 22:3585.  https://doi.org/10.1039/c2jm14759a CrossRefGoogle Scholar
  2. 2.
    Kawahara A, Takano Y, Takahashi M (1973) The structure of hopeite. Minedal J 7:289–297.  https://doi.org/10.2465/minerj1953.7.289 Google Scholar
  3. 3.
    Hill RJ, Jones JB (1976) The crystal structure of hopeite. Am Mineral 61:987–995.  https://doi.org/10.1107/S0567740878008286 Google Scholar
  4. 4.
    Herschke L, Enkelmann V, Lieberwirth I, Wegner G (2004) The role of hydrogen bonding in the crystal structures of zinc phosphate hydrates. Chemistry 10:2795–2803.  https://doi.org/10.1002/chem.200305693 CrossRefGoogle Scholar
  5. 5.
    Calvo C (1964) The crystal structure of α-Zn3(PO4)2. Can J Chem 43:436–445.  https://doi.org/10.1139/v67-376 CrossRefGoogle Scholar
  6. 6.
    Calvo C (1963) The crystal structure and luminescence of γ-zinc orthophosphate. Phys Chem Solids 24:141–149.  https://doi.org/10.1016/0022-3697(63)90049-0 CrossRefGoogle Scholar
  7. 7.
    Wang J, Su Q, Wang S (2005) A novel red long lasting phosphorescent (LLP) material β-Zn3(PO4)2: Mn2+, Sm3+. Mater Res Bull 40:590–598.  https://doi.org/10.1016/j.materresbull.2005.01.011 CrossRefGoogle Scholar
  8. 8.
    Stephens JS, Calvo C (1967) Crystal structure of β-Zn3(PO4)2. Can J Chem 45:2303–2316.  https://doi.org/10.1139/v67-376 Google Scholar
  9. 9.
    Roming M, Feldmann C, Avadhut YS, der Günne JS auf (2008) Characterization of noncrystalline nanomaterials: NMR of zinc phosphate as a case study. Chem Mater 20:5787–5795.  https://doi.org/10.1021/cm800805f CrossRefGoogle Scholar
  10. 10.
    Liang J, Li L (2011) A facile chemical route to α-Zn3(PO4)2·4H2O hierarchical sphere structures assembled by nanosheets. Mater Lett 65:285–288.  https://doi.org/10.1016/j.matlet.2010.10.018 CrossRefGoogle Scholar
  11. 11.
    Boonchom B, Baitahe R, Kongtaweelert S, Vittayakorn N (2010) Kinetics and thermodynamics of zinc phosphate hydrate synthesized by a simple route in aqueous and acetone media. Ind Eng Chem Res 49:3571–3576.  https://doi.org/10.1021/ie901626z CrossRefGoogle Scholar
  12. 12.
    Xie T, Guo H, Zhang J et al (2015) Phosphorescence behavior and photoluminescence mechanism of Dy3+ sensitized β-Zn3(PO4)2: Mn2+ phosphor. J Alloys Compd 642:225–231.  https://doi.org/10.1016/j.jallcom.2015.04.091 CrossRefGoogle Scholar
  13. 13.
    Liu J, Geng B, Wang S (2009) Preparation and usage of ZnS/phosphate heterostructured hemispheres in enhanced photocatalytic activities. Cryst Growth Des 9:4384–4390.  https://doi.org/10.1021/cg9003643 CrossRefGoogle Scholar
  14. 14.
    Jegannathan S, Sankara Narayanan TSN, Ravichandran K, Rajeswari S (2006) Formation of zinc phosphate coating by anodic electrochemical treatment. Surf Coat Technol 200:6014–6021.  https://doi.org/10.1016/j.surfcoat.2005.09.017 CrossRefGoogle Scholar
  15. 15.
    Homma T, Kunimoto M, Sasaki M et al (2018) Surface enhanced Raman spectroscopy measurement of surface pH at the electrode during Ni electrodeposition reaction. J Appl Electrochem 48:561–567.  https://doi.org/10.1007/s10800-017-1139-1 CrossRefGoogle Scholar
  16. 16.
    Weiss E, Sáez C, Groenen-Serrano K et al (2008) Electrochemical synthesis of peroxomonophosphate using boron-doped diamond anodes. J Appl Electrochem 38:93–100.  https://doi.org/10.1007/s10800-007-9405-2 CrossRefGoogle Scholar
  17. 17.
    Xiao X, Yan B, Song Y (2009) GdPxV1−xO4: Eu3+ nanophosphor and hydrated Zn3(PO4)2: Eu3+ nanorod bunch: facile reproducible hydrothermal synthesis, controlled microstructure, and photoluminescence. Cryst Growth Des 9:136–144.  https://doi.org/10.1021/cg7010869 CrossRefGoogle Scholar
  18. 18.
    Jegannathan S, Sankara Narayanan TSN, Ravichandran K, Rajeswari S (2005) Performance of zinc phosphate coatings obtained by cathodic electrochemical treatment in accelerated corrosion tests. Electrochim Acta 51:247–256.  https://doi.org/10.1016/j.electacta.2005.04.020 CrossRefGoogle Scholar
  19. 19.
    Sastry SS, Rao BRV (2014) Spectroscopic studies of copper doped alkaline earth lead zinc phosphate glasses. Phys B 434:159–164.  https://doi.org/10.1016/j.physb.2013.11.017 CrossRefGoogle Scholar
  20. 20.
    Yan S, He W, Sun C et al (2009) The biomimetic synthesis of zinc phosphate nanoparticles. Dye Pigment 80:254–258.  https://doi.org/10.1016/j.dyepig.2008.06.010 CrossRefGoogle Scholar
  21. 21.
    Lenz DM, Delamar M, Ferreira CA (2005) Methodology for zinc phosphate pigment incorporation into polypyrrole matrix. J Appl Electrochem 35:1051–1057.  https://doi.org/10.1007/s10800-005-9014-x CrossRefGoogle Scholar
  22. 22.
    Duprat M, Bonnel A, Dabosi F et al (1983) Les monofluorophosphates de zinc et de potassium en tant qu’inhibiteurs de la corrosion d’un acier au carbone en solution de NaCl a 3%. J Appl Electrochem 13:317–323.  https://doi.org/10.1007/BF00941603 CrossRefGoogle Scholar
  23. 23.
    Yuan AQ, Liao S, Tong ZF et al (2006) Synthesis of nanoparticle zinc phosphate dihydrate by solid state reaction at room temperature and its thermochemical study. Mater Lett 60:2110–2114.  https://doi.org/10.1016/j.matlet.2005.12.082 CrossRefGoogle Scholar
  24. 24.
    del Amo B, Romagnoli R, Vetere V, Hernández L (1998) Study of the anticorrosive properties of zinc phosphate in vinyl paints. Prog Org Coat 33:28–35.  https://doi.org/10.1016/S0300-9440(97)00124-0 CrossRefGoogle Scholar
  25. 25.
    He W, Yan S, Wang Y et al (2009) Biomimetic synthesis of mesoporous zinc phosphate nanoparticles. Alloy Compd 477:657–660.  https://doi.org/10.1016/j.jallcom.2008.10.136 CrossRefGoogle Scholar
  26. 26.
    Jegannathan S, Arumugam TK, Narayanan TSNS, Ravichandran K (2009) Formation and characteristics of zinc phosphate coatings obtained by electrochemical treatment: cathodic vs. anodic. Prog Org Coatings 65:229–236.  https://doi.org/10.1016/j.porgcoat.2008.11.009 CrossRefGoogle Scholar
  27. 27.
    Bessegato GG, Cardoso JC, Silva BF da, Zanoni MVB (2014) Enhanced photoabsorption properties of composites of Ti/TiO2 nanotubes decorated by Sb2S3 and improvement of degradation of hair dye. J Photochem Photobiol A 276:96–103.  https://doi.org/10.1016/j.jphotochem.2013.12.001 CrossRefGoogle Scholar
  28. 28.
    Lu Q, Chen K, Pan W et al (2016) Room temperature electrodeposition of Ag3PO4 films. J Electrochem Soc 163:D206–D211.  https://doi.org/10.1149/2.0081606jes CrossRefGoogle Scholar
  29. 29.
    Shimura M, Shakushiro K, Shimura Y (1986) Photo-electrochemical solar cells with a SnO2-liquid junction sensitized with highly concentrated dyes. J Appl Electrochem 16:683–692.  https://doi.org/10.1007/BF01006920 CrossRefGoogle Scholar
  30. 30.
    Zhao X, Zhu Y (2006) Synergetic degradation of rhodamine B at a porous ZnWO4 film electrode by combined electro-oxidation and photocatalysis. Environ Sci Technol 40:3367–3372.  https://doi.org/10.1021/es052029e CrossRefGoogle Scholar
  31. 31.
    Lei P, Chen C, Yang J et al (2005) Degradation of dye pollutants by immobilized polyoxometalate with H2O2 under visible-light irradiation. Environ Sci Technol 39:8466–8474.  https://doi.org/10.1021/es050321g CrossRefGoogle Scholar
  32. 32.
    Chen C, Zhao W, Lei P et al (2004) Photosensitized degradation of dyes in polyoxometalate solutions versus TiO2 dispersions under visible-light irradiation: mechanistic implications. Chemistry 10:1956–1965.  https://doi.org/10.1002/chem.200305453 CrossRefGoogle Scholar
  33. 33.
    Hallaoui A, Taoufyq A, Arab M et al (2016) Structural, vibrational and photoluminescence properties of Sr(1−x)PbxMoO4 solid solution synthesized by solid state reaction. Mater Res Bull 79:121–132.  https://doi.org/10.1016/j.materresbull.2016.03.015 CrossRefGoogle Scholar
  34. 34.
    Taoufyq A, Guinneton F, Valmalette JC et al (2014) Structural, vibrational and luminescence properties of the (1-x) CaWO4-xCdWO4 system. J Solid State Chem 219:127–137.  https://doi.org/10.1016/j.jssc.2014.07.017 CrossRefGoogle Scholar
  35. 35.
    Li Q, Zhang Q, Cui H et al (2013) Fabrication of cerium-doped lead dioxide anode with improved electrocatalytic activity and its application for removal of rhodamine B. Chem Eng J 228:806–814.  https://doi.org/10.1016/j.cej.2013.05.064 CrossRefGoogle Scholar
  36. 36.
    Centre d’expertise en analyse environnementale du Québec (2010) Détermination de la demande chimique en oxygène: méthode de reflux en système fermé suivi d’un dosage par colorimétrie avec le bichromate de potassium, MA. 315–DCO 1.1. Ministère du Développement Durable, l’Environnement Des Parcs Du, Québec, pp 1–11Google Scholar
  37. 37.
    Kpidi YH, Yapo OB, Ballet TG, Ohou-Yao M-J (2017) Variabilité journalière de la qualité physico-chimique du lac M’koa de Jacqueville (Côte d’Ivoire). Int J Biol Chem Sci 11:901.  https://doi.org/10.4314/ijbcs.v11i2.29 CrossRefGoogle Scholar
  38. 38.
    Atourki L, Ihalane EH, Kirou H et al (2016) Characterization of nanostructured ZnO grown by linear sweep voltammetry. Sol Energy Mater Sol Cells 148:20–24.  https://doi.org/10.1016/j.solmat.2015.10.003 CrossRefGoogle Scholar
  39. 39.
    Fahoume M, Maghfoul O, Aggour M et al (2006) Growth and characterization of ZnO thin films prepared by electrodeposition technique. Sol Energy Mater Sol Cells 90:1437–1444.  https://doi.org/10.1016/j.solmat.2005.10.010 CrossRefGoogle Scholar
  40. 40.
    Eyraud M, Jimenez-Cadena G, Chassigneux C et al (2012) Electrochemical fabrication of oriented ZnO nanorods on TiO2 nanotubes. Int J Nanotechnol 9:295–311CrossRefGoogle Scholar
  41. 41.
    Kiss K, Coll-Palagos M (1987) Cyclic voltammetric and scanning electron microscopic evaluation of the corrosion resistance of Zn-phosphated steel. Corrosion 43:8–14.  https://doi.org/10.5006/1.3583114 CrossRefGoogle Scholar
  42. 42.
    Kuo MC, Yen SK (2002) The process of electrochemical deposited hydroxyapatite coatings on biomedical titanium at room temperature. Mater Sci Eng C 20:153–160.  https://doi.org/10.1016/S0928-4931(02)00026-7 CrossRefGoogle Scholar
  43. 43.
    Chennah A, Naciri Y, Ait Ahsaine H et al (2017) Electrocatalytic properties of hydroxyapatite thin films electrodeposited on stainless steel substrates. Mediterr J Chem 6:255.  https://doi.org/10.13171/mjc66/01712241118-gavarri CrossRefGoogle Scholar
  44. 44.
    Baitahe R, Vittayakorn N, Maensiri S (2015) Correlation between the chromaticity, dielectric properties and structure of the binary metal pyrophosphates, Cu(2−x) Znx P2O7. RSC Adv 5:88890–88899.  https://doi.org/10.1039/C5RA11103J CrossRefGoogle Scholar
  45. 45.
    Pawlig O, Trettin R (2000) In-situ DRIFT spectroscopic investigation on the chemical evolution of zinc phosphate acid–base cement. Chem Mater 12:1279–1287.  https://doi.org/10.1021/cm991148o CrossRefGoogle Scholar
  46. 46.
    Castagnola MJ, Dutta PK (2001) Raman microprobe studies of dissolution of microporous faujasitic-like zincophosphate crystals. Microporous Mesoporous Mater 42:235–243.  https://doi.org/10.1016/S1387-1811(00)00324-3 CrossRefGoogle Scholar
  47. 47.
    Osorio R, Cabello I, Toledano M (2014) Bioactivity of zinc-doped dental adhesives. J Dent 42:403–412.  https://doi.org/10.1016/j.jdent.2013.12.006 CrossRefGoogle Scholar
  48. 48.
    Bach S, Celinski VR, Dietzsch M et al (2015) Thermally highly stable amorphous zinc phosphate intermediates during the formation of zinc phosphate hydrate. J Am Chem Soc 137:2285–2294.  https://doi.org/10.1021/ja5103663 CrossRefGoogle Scholar
  49. 49.
    Pawlig O, Schellenschla V, Lutz HD, Trettin R (2001) Vibrational analysis of iron and zinc phosphate conversion coating constituents. Spectrochim Acta Part A 57:581–590.  https://doi.org/10.1016/S1386-1425(00)00410-8 CrossRefGoogle Scholar
  50. 50.
    Glorian H, Schmalz V, Kürbis S et al (2017) Electrochemical decomposition of dissolved organic carbon using boron-doped diamond technology as basic element of a portable DOC analyzer. J Electroanal Chem 801:43–48.  https://doi.org/10.1016/j.jelechem.2017.07.006 CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Laboratoire Matériaux et Environnement (LME), Faculté des Sciences d’AgadirAgadirMorocco
  2. 2.Université de Toulon, Aix Marseille Univ, CNRS 7334, IM2NPLa Garde CedexFrance

Personalised recommendations