Advertisement

Journal of Applied Electrochemistry

, Volume 48, Issue 8, pp 959–971 | Cite as

Fabrication and characterization of microtubular solid oxide cells for CO2/CO redox operations

  • Chunlei Ren
  • Yun Gan
  • Chunyang Yang
  • Myongjin Lee
  • Robert D. Green
  • Xingjian Xue
Research Article
  • 141 Downloads
Part of the following topical collections:
  1. Fuel cells

Abstract

Ni-cermet fuel electrode-supported microtubular solid oxide cells with single layer Sm0.2Ce0.8O1.9 (SDC) electrolyte and bilayer YSZ/SDC electrolyte are fabricated for CO2/CO redox operations, i.e., NiO–SDC/SDC/PrBaCo2O5+δ and NiO–SDC/YSZ/SDC/PrBaCo2O5+δ, respectively. The substrate fuel electrode features radially well-aligned microchannels, which are open at the inner surface of the substrate, enabling facile fuel/gas diffusion. With CO/CO2 mixture gas as fuel, the SOFC performance of the single layer electrolyte cell is significantly improved over the bilayer electrolyte counterpart. However, due to the current leakage through the SDC electrolyte, the Faraday efficiency of the single layer electrolyte cell in SOEC mode is < 14%, even though the input current is very high at a given applied cell voltage, while the bilayer electrolyte cell may achieve Faraday efficiencies of 90% and above. Other different behaviors are also identified between the two cells. The study also emphasizes the important role of a purely ionic conducting electrolyte for CO2 electrolysis operation with microtubular cells.

Graphical Abstract

The substrate NiO–SDC electrode is fabricated using dual-layer spinning extrusion process in combination with phase inversion method. After heat treatment, the substrate electrode features radially well aligned microchannels, open at the inner surface. Built upon substrate electrode, dense and thin film electrolyte layer as well as oxygen electrode layer are fabricated through dip-coating and sintering alternatively, forming microtubular solid oxide cells. CO2/CO redox operations with the fabricated microtubular cells are systematically studied.

Keywords

Microtubular SOC Co-extrusion Bilayer electrolyte Redox CO2 electrolysis 

Notes

Acknowledgements

This work was supported by Early Stage Innovations Grant #NNX14AB26G under NASA’s Space Technology Research Grants Program. We thank Dr. Serene Farmer at NASA Glenn Research Center for valuable comments on the manuscript.

References

  1. 1.
    Peters GP, Marland G, Le Quere C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Change 2:2–4CrossRefGoogle Scholar
  2. 2.
    Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL, Dupuis M, Ferry JG, Fujita E, Hille R, Kenis PJA, Kerfeld CA, Morris RH, Peden CHF, Portis AR, Ragsdale SW, Rauchfuss TB, Reek JNH, Seefeldt LC, Thauer RK, Waldrop GL (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113:6621–6658CrossRefGoogle Scholar
  3. 3.
    Tang P, Zhu QJ, Wu ZX, Ma D (2014) Methane activation: the past and future. Energy Environ Sci 7:2580–2591Google Scholar
  4. 4.
    Chan SLF, Lam TL, Yang C, Yan SC, Cheng NM (2015) A robust and efficient cobalt molecular catalyst for CO2 reduction. Chem Commun 51:7799–7801CrossRefGoogle Scholar
  5. 5.
    Lan R, Tao SW, Irvine JTS (2010) A direct urea fuel cell—power from fertiliser and waste. Energy Environ Sci 3:438–441CrossRefGoogle Scholar
  6. 6.
    Yue XL, Irvine JTS (2012) Alternative cathode material for CO2 reduction by high temperature solid oxide electrolysis cells. J Electrochem Soc 159:F442–F448CrossRefGoogle Scholar
  7. 7.
    Cheng CY, Kelsall GH, Kleiminger L (2013) Reduction of CO2 to CO at Cu-ceria-gadolinia (CGO) cathode in solid oxide electrolyser. J Appl Electrochem 43:1131–1144CrossRefGoogle Scholar
  8. 8.
    Xie YM, Xiao J, Liu DD, Liu J, Yang CH (2015) Electrolysis of carbon dioxide in a solid oxide electrolyzer with silver-gadolinium-doped ceria cathode. J Electrochem Soc 162:F397–F402Google Scholar
  9. 9.
    Alioshin Y, Kohn M, Rothschild A, Karni J (2016) High temperature electrolysis of CO2 for fuel production. J Electrochem Soc 163:F79–F87CrossRefGoogle Scholar
  10. 10.
    Green RD, Liu CC, Adler SB (2008) Carbon dioxide reduction on gadolinia-doped ceria cathodes. Solid State Ionics 179:647–660CrossRefGoogle Scholar
  11. 11.
    Yang L, Xue X, Xie K (2015) Spatially confined catalysis enhanced high temperature carbon dioxide electrolysis. Phys Chem Chem Phys 17:11705–11714Google Scholar
  12. 12.
    Theis Løye Skafte P, Blennow J, Hjelm C, Graves (2018) Carbon deposition and sulfur poisoning during CO2 electrolysis in nickel based solid oxide cell electrodes. J Power Sources 373:54–60Google Scholar
  13. 13.
    Jiang Y, Virkar AV (2003) Fuel composition and diluent effect on gas transport and performance of anode-supported SOFCs. J Electrochem Soc 150(7):A942–A951CrossRefGoogle Scholar
  14. 14.
    Goodliff KE, Troutman P, Craig DA, Caram J, Herrmann N (2016) Evolvable Mars Campaign 2016—A Campaign Perspective. In AIAA SPACE 2016, p 5456Google Scholar
  15. 15.
    Sanders GB, Paz A, Oryshchyn L, Araghi K, Muscatello A, Linne DL, Kleinhenz JE, Peters T (2015) Mars ISRU for production of mission critical consumables—options, recent studies, and current state of the art. In AIAA SPACE 2015 conference and exposition, AIAA, p 4458Google Scholar
  16. 16.
    Kleinhenz JE, Paz A, (2017) An ISRU propellant production system for a fully fueled Mars Ascent Vehicle. In 10th symposium on space resource utilization, AIAA, p 0423Google Scholar
  17. 17.
    Rapp D, Hoffman JA, Michael H (2015) The Mars Oxygen ISRU Experiment (MOXIE) on the Mars 2020 Rover. In AIAA SPACE 2015 conference and exposition, AIAA, p 4561Google Scholar
  18. 18.
    Mizusaki J, Tagawa H, Miyaki Y, Yamauchi S, Fueki K, I K, Hirano K (1992) Kinetics of the electrode-reaction at the Co-CO2, porous Pt/stabilized zirconia interface. Solid State Ionics 53:126–134Google Scholar
  19. 19.
    Tao G, Sridhar KR, Chan CL (2004) Study of carbon dioxide electrolysis at electrode/electrolyte interface: part I. Pt/YSZ interface. Solid State Ionics 175:615–619Google Scholar
  20. 20.
    Tao G, Sridhar KR, Chan CL (2004) Study of carbon dioxide electrolysis at electrode/electrolyte interface: part II. Pt-YSZ cermet/YSZ interface. Solid State Ionics 175:621–624Google Scholar
  21. 21.
    Ebbesen SD, Mogensen M (2009) Electrolysis of carbon dioxide in solid oxide electrolysis cells. J Power Sources 193:349–358CrossRefGoogle Scholar
  22. 22.
    Zhan ZL, Zhao L (2010) Electrochemical reduction of CO2 in solid oxide electrolysis cells. J Power Sources 195:7250–7254Google Scholar
  23. 23.
    Yue XL, Irvine JTS (2012) Impedance studies on LSCM/GDC cathode for high temperature CO2 electrolysis. Electrochem Solid State Lett 15:B31–B34CrossRefGoogle Scholar
  24. 24.
    Bidrawn F, Kim G, Corre G, Irvine JTS, Vohs JM, Gorte RJ (2008) Efficient reduction of CO2 in a solid oxide electrolyzer. Electrochem Solid State Lett 11:B167–B170CrossRefGoogle Scholar
  25. 25.
    Xu SS, Li SS, Yao WT, Dong DH, Xie K (2013) Direct electrolysis of CO2 using an oxygen-ion conducting solid oxide electrolyzer based on La0.75Sr0.25Cr0.5Mn0.5O3-delta electrode. J Power Sources 230:115–121CrossRefGoogle Scholar
  26. 26.
    Lawlor V, Griesser S, Buchinger G, Olabi AG, Cordiner S, Meissner D (2009) Review of the micro-tubular solid oxide fuel cell Part I. Stack design issues and research activities. J Power Sources 193:387–399CrossRefGoogle Scholar
  27. 27.
    Lawlor V (2013) Review of the micro-tubular solid oxide fuel cell (part II: cell design issues and research activities). J Power Sources 240:421–441CrossRefGoogle Scholar
  28. 28.
    Kendall K (2010) Progress in microtubular solid oxide fuel cells. Int J Appl Ceram Technol 7:1–9CrossRefGoogle Scholar
  29. 29.
    Panthi D, Tsutsumi A (2014) Micro-tubular solid oxide fuel cell based on a porous yttria-stabilized zirconia support, Sci Rep 4:5754CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Panthi D, Choi B, Tsutsumi A (2015) Fabrication and evaluation of a micro-tubular solid oxide fuel cell with an inert support using scandia-stabilized zirconia electrolyte. J Electrochem Soc 162:F1555CrossRefGoogle Scholar
  31. 31.
    Panthi D, Choi B, Tsutsumi A (2017) Direct methane operation of a micro-tubular solid oxide fuel cell with a porous zirconia support. J Solid State Electrochem 21(1):255–262CrossRefGoogle Scholar
  32. 32.
    Sumi H, Yamaguchi T, Shimada H, Fujishiro Y, Awano M (2017) Internal partial oxidation reforming of butane and steam reforming of ethanol for anode-supported microtubular solid oxide fuel cells. Fuel Cells 17(6):875–881CrossRefGoogle Scholar
  33. 33.
    Sumi H, Shimada H, Yamaguchi Y, Yamaguchi T (2017) Effect of anode thickness on polarization resistance for metal-supported microtubular solid oxide fuel cells. J Electrochem Soc 164(4):F243–F247CrossRefGoogle Scholar
  34. 34.
    Othman MHD, Droushiotis N, Wu ZT, Kelsall G, Li K (2011) Novel fabrication technique of hollow fibre support for micro-tubular solid oxide fuel cells. J Power Sources 196:5035–5044CrossRefGoogle Scholar
  35. 35.
    Droushiotis N, Othman MHD, Doraswami U, Wu ZT, Kelsall G, Li K (2009) Novel co-extruded electrolyte-anode hollow fibres for solid oxide fuel cells. Electrochem Commun 11:1799–1802CrossRefGoogle Scholar
  36. 36.
    Sun W, Zhang NQ, Mao YC, Sun KN (2012) Fabrication of anode-supported Sc2O3-stabilized-ZrO2 electrolyte micro-tubular solid oxide fuel cell by phase-inversion and dip-coating. Electrochem Commun 20:117–120Google Scholar
  37. 37.
    Liu T, Ren C, Fang SM, Wang Y, Chen FL (2014) Microstructure tailoring of the nickel oxide-yttria-stabilized zirconia hollow fibers toward high-performance microtubular solid oxide fuel cells. ACS Appl Mater Interfaces 6:18853–18860Google Scholar
  38. 38.
    Liu T, Wang Y, Ren C, Fang SM, Mao YT, Chen FL (2015) Novel light-weight, high-performance anode-supported microtubular solid oxide fuel cells with an active anode functional layer. J Power Sources 293:852–858Google Scholar
  39. 39.
    Zhang XZ, Lin B, Ling YH, Dong YC, Meng GY, Liu XQ (2010) An anode-supported micro-tubular solid oxide fuel cell with redox stable composite cathode. Int J Hydrog Energy 35:8654–8662Google Scholar
  40. 40.
    Kleiminger L, Li T, Li K, Kelsall GH (2014) CO2 splitting into CO and O-2 in micro-tubular solid oxide electrolysers. RSC Adv 4:50003–50016CrossRefGoogle Scholar
  41. 41.
    Yang CH, Jin C, Chen FL (2010) Micro-tubular solid oxide fuel cells fabricated by phase-inversion method. Electrochem Commun 12:657–660Google Scholar
  42. 42.
    Li T, Wu ZT, Li K (2014) A dual-structured anode/Ni-mesh current collector hollow fibre for micro-tubular solid oxide fuel cells (SOFCs). J Power Sources 251:145–151CrossRefGoogle Scholar
  43. 43.
    Ren CL, Gan Y, Lee M, Yang CY, He F, Jiang YM, Dong GH, Green RD, Xue XJ (2016) Fabrication and characterization of high performance intermediate temperature micro-tubular solid oxide fuel cells. J Electrochem Soc 163:F1115–F1123Google Scholar
  44. 44.
    Ding HP, Xie YY, Xue XJ (2011) Electrochemical performance of BaZr0.1Ce0.7Y0.1Yb0.1O3-delta electrolyte based proton-conducting SOFC solid oxide fuel cell with layered perovskite PrBaCo2O5 + delta cathode. J Power Sources 196:2602–2607Google Scholar
  45. 45.
    Mitsuyasu H, Nonaka Y, Eguchi K (1998) Analysis of solid state reaction at the interface of yttria-doped ceria/yttria-stabilized zirconia. Solid State Ionics 113:279–284Google Scholar
  46. 46.
    Tsoga A, Gupta A, Naoumidis A, Nikolopoulos P (2000) Gadolinia-doped ceria and yttria stabilized zirconia interfaces: regarding their application for SOFC technology. Acta Mater 48:4709–4714CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of South CarolinaColumbiaUSA
  2. 2.NASA Glenn Research CenterClevelandUSA

Personalised recommendations