Advertisement

Journal of Applied Electrochemistry

, Volume 48, Issue 8, pp 911–921 | Cite as

Experimental characterization of high-temperature proton exchange membrane fuel cells under CO- and methane-containing hydrogen-rich gases

  • Chen-Yu Chen
  • Keng-Pin Huang
Research Article
  • 45 Downloads
Part of the following topical collections:
  1. Fuel cells

Abstract

The objective of this work is to study a high-temperature proton exchange membrane fuel cell using CO- and methane-containing hydrogen-rich gases because of the advantages of high operating temperature and the growing feasibility of using natural gases or methane as the sources of hydrogen-rich reformate gases. According to the experimental results, it is suggested that the fuel cell be operated at 180 °C under reformate gases with high CO concentrations to avoid not only a significant decrease in performance, but also severe potential oscillations. In addition, the anode oxidation reaction is more sensitive to the temperature than the cathode reduction reaction under CO-containing H2. On the other hand, the effects of methane in the reformate gas on the fuel cell can be ignored because the existence of methane causes neither a decrease in the cell performance nor an increase in the anodic charge transfer resistance. Thus, the CO concentration and operating temperature are still the two dominant parameters with regard to the cell performance under CO- and methane-containing hydrogen-rich gases.

Graphical Abstract

Keywords

High-temperature proton exchange membrane fuel cell Hydrogen-rich gas Performance test Voltage oscillation 

Notes

Acknowledgements

This work was supported by the Ministry of Science and Technology (MOST), Taiwan under contract MOST 106-2221-E-034-016. We thus appreciate the financial assistance provided by MOST.

References

  1. 1.
    Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Source 184:104–119CrossRefGoogle Scholar
  2. 2.
    Chen CY, Huang KP, Yan WM, Lai MP, Yang CC (2016) Development and performance diagnosis of a high power air-cooled PEMFC stack. Int J Hydrog Energy 41:11784–11793CrossRefGoogle Scholar
  3. 3.
    Ahadi M, Tam M, Saha MS, Stumper J, Bahrami M (2017) Thermal conductivity of catalyst layer of polymer electrolyte membrane fuel cells part 1: experimental study. J Power Source 354:207–214CrossRefGoogle Scholar
  4. 4.
    Chen CY, Huang KP (2017) Performance and transient behavior of the kW-grade PEMFC stack with the Pt-Ru catalyst under CO-contained diluted hydrogen. Int J Hydrog Energy 42:22250–22258CrossRefGoogle Scholar
  5. 5.
    Schmidt TJ, Baurmeister J (2008) Properties of high-temperature PEFC Celtec®-P 1000 MEAs in start/stop operation mode. J Power Source 176:428–434CrossRefGoogle Scholar
  6. 6.
    Li Q, Jensen JO, Savinell RF, Bjerrum NJ (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477CrossRefGoogle Scholar
  7. 7.
    Tseng CJ, Heush YJ, Chiang CJ, Lee YH, Lee KR (2016) Application of metal foams to high temperature PEM fuel cells. Int J Hydrog Energy 41:16196–16204CrossRefGoogle Scholar
  8. 8.
    Oono Y, Fukuda T, Sounai A, Hori M (2010) Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells. J Power Source 195:1007–1014CrossRefGoogle Scholar
  9. 9.
    Liu Y, Lehnert W, Janßen H, Samsun RC, Stolten D (2016) A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles. J Power Source 311:91–102CrossRefGoogle Scholar
  10. 10.
    Wainright JS, Wang JT, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142:L121–L123CrossRefGoogle Scholar
  11. 11.
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ, Manjavacas G (2006) Synthesis and characterisation of poly[2,2-(m-phenylene)-5,5-bibenzimidazole] as polymer electrolyte membrane for high temperature PEMFCs. J Membr Sci 280:351–362CrossRefGoogle Scholar
  12. 12.
    Mader J, Xiao L, Schmidt TJ, Benicewicz BC (2008) Polybenzimidazole/acid complexes as high-temperature membranes. Adv Polym Sci 216:63–124Google Scholar
  13. 13.
    He R, Li Q, Bach A, Jensen JO, Bjerrum NJ (2006) Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells. J Membr Sci 277:38–45CrossRefGoogle Scholar
  14. 14.
    Bae JM, Honma I, Murata M, Yamamoto T, Rikukawa M, Ogata N (2002) Properties of selected sulfonated polymers as proton-conducting electrolytes for polymer electrolyte fuel cells. Solid State Ion 147:189–194CrossRefGoogle Scholar
  15. 15.
    Jouanneau J, Mercier R, Gonon L, Gebel G (2007) Synthesis of sulfonated polybenzimidazoles from functionalized monomers: preparation of ionic conducting membranes. Macromolecules 40:983–990CrossRefGoogle Scholar
  16. 16.
    Ubong EU, Shi Z, Wang X (2009) Three-dimensional modeling and experimental study of a high temperature PBI-based PEM fuel cell. J Electrochem Soc 156:B1276–B1282CrossRefGoogle Scholar
  17. 17.
    Xiao L, Zhang H, Jana T, Scanlon E, Chen R, Choe EW, Ramanathan LS, Yu S, Benicewicz BC (2005) Synthesis and characterization of pyridine-based polybenzimidazoles for high temperature polymer electrolyte membrane fuel cell applications. Fuel Cells 5:287–295CrossRefGoogle Scholar
  18. 18.
    Quartarone E, Magistris A, Mustarelli P, Grandi S, Carollo A, Zukowska GZ, Garbarczyk JE, Nowinski JL, Gerbaldi C, Bodoardo S (2009) Pyridine-based PBI composite membranes for PEMFCs. Fuel Cells 9:335–349Google Scholar
  19. 19.
    Kim S, Shimpalee S, Van Zee JW (2014) The effect of reservoirs and fuel dilution on the dynamic behavior of a PEMFC. J Power Source 137:43–52CrossRefGoogle Scholar
  20. 20.
    Wang W, Wang W, Chen S (2016) The effects of hydrogen dilution, carbon monoxide poisoning for a Pt–Ru anode in a proton exchange membrane fuel cell. Int J Hydrog Energy 41:20680–20692CrossRefGoogle Scholar
  21. 21.
    Jimenez S, Soler J, Valenzuela RX, Daza L (2005) Assessment of the performance of a PEMFC in the presence of CO. J Power Source 151:69–73CrossRefGoogle Scholar
  22. 22.
    Chu HS, Wang CP, Liao WC, Yan WM (2006) Transient behavior of CO poisoning of the anode catalyst layer of a PEM fuel cell. J Power Source 159:1071–1077CrossRefGoogle Scholar
  23. 23.
    Modestov AD, Tarasevich MR, Filimonov VY, Davydova ES (2010) CO tolerance and CO oxidation at Pt and Pt–Ru anode catalysts in fuel cell with polybenzimidazole-H3PO4 membrane. Electrochim Acta 55:6073–6080CrossRefGoogle Scholar
  24. 24.
    Wagner N, Schulze M (2003) Change of electrochemical impedance spectra during CO poisoning of the Pt and Pt-Ru anodes in a membrane fuel cell (PEFC). Electrochim Acta 48:3899–3907CrossRefGoogle Scholar
  25. 25.
    Wagner N, Gulzow E (2004) Change of electrochemical impedance spectra (EIS) with time during CO- poisoning of the Pt-anode in a membrane fuel cell. J Power Source 127:341–347CrossRefGoogle Scholar
  26. 26.
    Krishnan P, Park JS, Kim CS (2006) Performance of a poly (2,5-benzimidazole) membrane based high temperature PEM fuel ell in the presence of carbon monoxide. J Power Source 159:817–823CrossRefGoogle Scholar
  27. 27.
    Wang CP, Chu HS, Yan YY, Hsueh KL (2007) Transient evolution of carbon monoxide poisoning effect of PBI membrane fuel cells. J Power Source 170:235–241CrossRefGoogle Scholar
  28. 28.
    Mocoteguy P, Ludwig B, Scholta J, Barrera R, Ginocchio S (2009) Long term testing in continuous mode of HT-PEMFC based H3PO4 PBI Celtec-P MEAs for m-CHP applications. Fuel Cells 9:325–348CrossRefGoogle Scholar
  29. 29.
    Bujlo P, Pasupathi S, Ulleberg Ø, Scholta J, Nomnqa MV, Rabiu A, Pollet BG (2013) Validation of an externally oil-cooled 1 kWel HT-PEMFC stack operating at various experimental conditions. Int J Hydrog Energy 38:9847–9855CrossRefGoogle Scholar
  30. 30.
    Oh K, Ju H (2015) Temperature dependence of CO poisoning in high-temperature proton exchange membrane fuel cells with phosphoric acid-doped polybenzimidazole membranes. Int J Hydrog Energy 40:7743–7753CrossRefGoogle Scholar
  31. 31.
    Zhang C, Zhou W, Ehteshami MM, Wang Y, Chan SH (2015) Determination of the optimal operating temperature range for high temperature PEM fuel cell considering its performance, CO tolerance and degradation. Energy Convers Manag 105:433–441CrossRefGoogle Scholar
  32. 32.
    Li Q, He R, Jensen JO, Bjerrum NJ (2003) Approaches and recent development of polymer electrolyte membranes for fuel cells operating above 100 °C. Chem Mater 15:4896–4915CrossRefGoogle Scholar
  33. 33.
    Linares JJ, Sanches C, Paganin VA, Gonzalez ER (2012) Performance of a poly(2,5-benzimidazole)-based polymer electrolyte membrane fuel cell. Int J Hydrog Energy 37:7212–7220CrossRefGoogle Scholar
  34. 34.
    Li Q, He R, Gao JA, Jensen JO, Bjerrum NJ (2003) The CO poisoning effect in PEMFCs operational at temperatures up to 200 °C. J Electrochem Soc 150:A1599–A1605CrossRefGoogle Scholar
  35. 35.
    Bose S, Kuila T, Nguyen TXH, Kim NH, Lau KT, Lee JH (2011) Polymer membranes for high temperature proton exchange membrane fuel cell: recent advances and challenges. Prog Polym Sci 36:813–843CrossRefGoogle Scholar
  36. 36.
    Araya SS, Zhou F, Liso V, Sahlin SL, Vang JR, Thomas S, Gao X, Jeppesen C, Kær SK (2016) A comprehensive review of PBI-based high temperature PEM fuel cells. Int J Hydrog Energy 41:21310–21344CrossRefGoogle Scholar
  37. 37.
    Kwon K, Yoo DY, Park JO (2008) A comprehensive review of PBI-based high temperature PEM fuel cells. J Power Source 185:202–206CrossRefGoogle Scholar
  38. 38.
    Chen CY, Lai WH, Chen YK, Su SS (2014) Characteristic studies of a PBI/H3PO4 high temperature membrane PEMFC under simulated reformate gases. Int J Hydrog Energy 39:13757–13762CrossRefGoogle Scholar
  39. 39.
    Zhang JL, Tang YH, Song CJ, Zhang JJ (2007) Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200 degrees C. J Power Source 172:163–171CrossRefGoogle Scholar
  40. 40.
    Das SK, Reis A, Berry KJ (2009) Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell. J Power Source 193:691–698CrossRefGoogle Scholar
  41. 41.
    Andreasen SJ, Vang JR, Kær SK (2011) High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy. Int J Hydrog Energy 36:9815–9830CrossRefGoogle Scholar
  42. 42.
    Thomassen M, Sheridan E, Kvello J (2010) Electrochemical hydrogen separation and compression using polybenzimidazole (PBI) fuel cell technology. J Nat Gas Sci Eng 2:229–234CrossRefGoogle Scholar
  43. 43.
    Bhatia KK, Wang CY (2004) Transient carbon monoxide poisoning of a polymer electrolyte fuel cell operating on diluted hydrogen feed. Electrochim Acta 49:2333–2341CrossRefGoogle Scholar
  44. 44.
    Yan WM, Chu HS, Lu MX, Weng FB, Jung GB, Lee CY (2009) Degradation of proton exchange membrane fuel cells due to CO and CO2 poisoning. J Power Source 188:141–147CrossRefGoogle Scholar
  45. 45.
    Osaki T, Narita N, Horiuchi T, Sugiyama T, Masuda H, Suzuki K (1997) Kinetics of reverse water gas shift (RWGS) reaction on metal disulfide catalysts. J Mol Catal A 125:63–71CrossRefGoogle Scholar
  46. 46.
    Korsgaard AR, Refshauge R, Nielsen MP, Bang M, Kær SK (2006) Experimental characterization and modeling of commercial polybenzimidazole-based MEA performance. J Power Source 162:239–245CrossRefGoogle Scholar
  47. 47.
    Oetjen HF, Schmidt VM, Stimming U, Trila F (1996) Performance data of a proton exchange membrane fuel cell using H2/CO as fuel gas. J Electrochem Soc 143:2842–3838CrossRefGoogle Scholar
  48. 48.
    Rasheed RKA, Chan SH (2015) Transient carbon monoxide poisoning kinetics during warm-up period of a high-temperature PEMFC: physical model and parametric study. Appl Energy 140:21–44Google Scholar
  49. 49.
    Pinar FJ, Rastedt M, Pilinski N, Wagner P, Dyck A (2017) Demonstrating feasibility of a high temperature polymer electrolyte membrane fuel cell operation with natural gas reformate composition. Int J Hydrog Energy 42:13860–13875CrossRefGoogle Scholar
  50. 50.
    Liu Z, Wainright JS, Savinell RF (2004) High-temperature polymer electrolytes for PEM fuel cells: study of the oxygen reduction reaction (ORR) at a Pt–polymer electrolyte interface. Chem Eng Sci 59:4833–4838CrossRefGoogle Scholar
  51. 51.
    Weiß A, Schindler S, Galbiati S, Danzer MA, Zeis R (2017) Distribution of relaxation times analysis of high-temperature PEM fuel cell impedance spectra. Electrochim Acta 230:391–398CrossRefGoogle Scholar
  52. 52.
    Kaserer S, Rakousky C, Melke J, Roth C (2013) Design of a reference electrode for high-temperature PEM fuel cells. J Appl Electrochem 43:1069–1078CrossRefGoogle Scholar
  53. 53.
    Zhang J, Datta R (2003) Online monitoring of anode outlet CO concentration in PEM fuel cells. Electrochem Solid-State Lett 6:A5–A8CrossRefGoogle Scholar
  54. 54.
    Zhang J, Datta R (2002) Sustained potential oscillations in proton exchange membrane fuel cells with PtRu as anode catalyst. J Electrochem Soc 14:A1423–A1431CrossRefGoogle Scholar
  55. 55.
    Zhang J, Datta R (2004) Mechanistic and bifurcation analysis of anode potential oscillations in PEMFCs with CO in anode feed. J Electrochem Soc 151:A689–A697CrossRefGoogle Scholar
  56. 56.
    Chen CY, Lai WH, Yan WM, Chen CC, Hsu SW (2013) Effects of nitrogen and carbon monoxide concentrations on performance of proton exchange membrane fuel cells with Pt–Ru anodic catalyst. J Power Source 243:138–146CrossRefGoogle Scholar
  57. 57.
    Springer TE, Rockward T, Zawodzinski TA, Gottesfeld S (2001) Model for polymer electrolyte fuel cell operation on reformate feed: effects of CO, H2 dilution, and high fuel utilization. J Electrochem Soc 148:A11–A23CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringChinese Culture UniversityTaipeiTaiwan, R.O.C.
  2. 2.Institute of Aeronautics and AstronauticsNational Cheng Kung UniversityTainanTaiwan, R.O.C.

Personalised recommendations