Advertisement

Journal of Applied Electrochemistry

, Volume 48, Issue 8, pp 867–883 | Cite as

Diethylenetriamine ion-imprinted silica gel for copper determination in tap water

  • Paulo Cesar Mendes Villis
  • José Costa Sampaio Filho
  • Wolia Costa Gomes
  • Rita de Cassia Mendonça de Miranda
  • Gilvanda Silva Nunes
  • Fábio Luiz Pissetti
  • Yoshitaka Gushikem
  • Alzira Maria Serpa Lucho
Research Article
  • 105 Downloads
Part of the following topical collections:
  1. Sensors

Abstract

This paper proposes the preparation of a hybrid adsorbent material organically modified with N1-[3-(trimethoxysilyl)propyl]diethylenetriamine and imprinted ionically with Cu(II) ions. The structure of functionalized silica matrix with an organic group containing electron-donating nitrogen atoms allows several applications such as adsorption of metal ions, electrocatalytic studies, and development of electrochemical sensors. The electrochemical behavior of the hybrid material was investigated using a carbon paste electrode in different electrochemical techniques: cyclic voltammetry, differential pulse voltammetry, differential pulse anodic stripping voltammetry, and chronoamperometry. DPASV yielded the best results and linear response to Cu(II) in the concentration range of 6.0 × 10−4 to 5.4 × 10−3 mmol L−1 (R2 = 0.999; n = 9) using a pre-concentration time (tpc) of 1800 s at a reduction potential (Ered) of − 0.51 V versus SCE and a scan rate of 20 mV s−1, with a detection limit estimated at 1.82 × 10−7 mmol L−1. The samples were evaluated using the proposed sensor and a good recovery of Cu(II) was obtained in the range from 92.88 to 110.89%. The proposed method for DPASV was used for Cu(II) determination in samples of tap water, and the results from literature and that of flame atomic absorption spectrometry.

Graphical Abstract

Keywords

Ion-imprinted Diethylenetriamine Copper(II) Tap water 

Notes

Acknowledgements

This work was supported by the University of CEUMA-UNICEUMA; FAPEMIG (Process CEX-0201/09) and FAPEMA (Process UNIVERSAL-00503/15). PCMV and AMSL are grateful to Prof. Dr. Yoshitaka Gushikem (IQ-UNICAMP, Brazil) for all help and friendship.

References

  1. 1.
    Pauling, L (1940) A theory of the structure and process of formation of antibodies. J Am Chem Soc 62:2643–2657CrossRefGoogle Scholar
  2. 2.
    Wulff G, Sarhan A (1972) Use of polymers with enzyme-analogous structures for resolution of racemates. Angew Chem Int Ed 11:341Google Scholar
  3. 3.
    Nishide H, Deguchi J, Tsuchida E (1976) Selective adsorption of metal-ions on crosslinked poly(vinylpyridine) resin prepared with a metal-ion as a template. Chem Lett 5:169–174CrossRefGoogle Scholar
  4. 4.
    de Oliveira FM, Segatelli MG, Tarley CR (2016) Hybrid molecularly imprinted poly(methacrylic acid-TRIM)-silica chemically modified with (3-glycidyloxypropyl)trimethoxysilane for the extraction of folic acid in aqueous medium. Mater Sci Eng C Mater Biol Appl 59:643–651.  https://doi.org/10.1016/j.msec.2015.10.061 CrossRefPubMedGoogle Scholar
  5. 5.
    Zheng H et al (2007) Highly selective determination of palladium(II) after preconcentration using Pd(II)-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique. Microchim Acta 157:7–11.  https://doi.org/10.1007/s00604-006-0649-z CrossRefGoogle Scholar
  6. 6.
    Bi X, Lau RJ, Yang KL (2007) Preparation of ion-imprinted silica gels functionalized with glycine, diglycine, and triglycine and their adsorption properties for copper ions. Langmuir 23:8079–8086.  https://doi.org/10.1021/la7008072 CrossRefPubMedGoogle Scholar
  7. 7.
    Chen J et al (2017) Nicotinamide phosphoribosyltransferase promotes pulmonary vascular remodeling and is a therapeutic target in pulmonary arterial hypertension. Circulation 135:1532–1546.  https://doi.org/10.1161/CIRCULATIONAHA.116.024557 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Cao L et al (2017) Porcine parvovirus induces activation of NF-kappaB signaling pathways in PK-15 cells mediated by toll-like receptors. Mol Immunol 85:248–255.  https://doi.org/10.1016/j.molimm.2016.12.002 CrossRefPubMedGoogle Scholar
  9. 9.
    Ezhilarasi AA et al (2016) Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: cytotoxicity effect of nanoparticles against HT-29 cancer cells. J Photochem Photobiol B Biol 164:352–360.  https://doi.org/10.1016/j.jphotobiol.2016.10.003 CrossRefGoogle Scholar
  10. 10.
    Barbosa F Jr et al (2006) Contrasting effects of age on the plasma/whole blood lead ratio in men and women with a history of lead exposure. Environ Res 102:90–95.  https://doi.org/10.1016/j.envres.2006.03.007 CrossRefPubMedGoogle Scholar
  11. 11.
    Bossi A, Bonini F, Turner AP, Piletsky SA (2007) Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron 22:1131–1137.  https://doi.org/10.1016/j.bios.2006.06.023 CrossRefPubMedGoogle Scholar
  12. 12.
    Zhang, T et al (2017) Synthesis of Cu(II) ion-imprinted polymers as solid phase adsorbents for deep removal of copper from concentrated zinc sulfate solution. Hydrometallurgy 169:599–606.  https://doi.org/10.1016/j.hydromet.2017.04.005 CrossRefGoogle Scholar
  13. 13.
    Wu G, Song G, Wu D, Shen Y, Wang Z, He C (2010) Synthesis of ion-imprinted mesoporous silica gel sorbent for selective adsorption of copper ions in aqueous media. Microchim Acta 171:203–209.  https://doi.org/10.1007/s00604-010-0414-1 CrossRefGoogle Scholar
  14. 14.
    Birlik E, Ersoz A, Denizli A, Say R (2006) Preconcentration of copper using double-imprinted polymer via solid phase extraction. Anal Chim Acta 565:145–151.  https://doi.org/10.1016/j.aca.2006.02.051 CrossRefGoogle Scholar
  15. 15.
    Jiang N, Chang XJ, Zheng H, He Q, Hu Z (2006) Selective solid-phase extraction of nickel(II) using a surface-imprinted silica gel sorbent. Anal Chim Acta 577:225–231CrossRefPubMedGoogle Scholar
  16. 16.
    Segatelli MG, Santos VS, Presotto ABT, Yoshida IVP, Tarley CRT (2010) Cadmium ion-selective sorbent preconcentration method using ion imprinted poly(ethylene glycol dimethacrylate-co-vinylimidazole). React Funct Polym 70:325–333.  https://doi.org/10.1016/j.reactfunctpolym.2010.02.006 CrossRefGoogle Scholar
  17. 17.
    Fu XC et al (2011) Stripping voltammetric detection of mercury(II) based on a surface ion imprinting strategy in electropolymerized microporous poly(2-mercaptobenzothiazole) films modified glassy carbon electrode. Anal Chim Acta 685:21–28CrossRefPubMedGoogle Scholar
  18. 18.
    Speltini A, Scalabrini A, Maraschi F, Sturini M, Profumo A (2017) Newest applications of molecularly imprinted polymers for extraction of contaminants from environmental and food matrices: a review. Anal Chim Acta 974:1–26.  https://doi.org/10.1016/j.aca.2017.04.042 CrossRefPubMedGoogle Scholar
  19. 19.
    Takeuchi RM, Santos AL, Padilha PM, Stradiotto NR (2007) Copper determination in ethanol fuel by differential pulse anodic stripping voltammetry at a solid paraffin-based carbon paste electrode modified with 2-aminothiazole organofunctionalized silica. Talanta 71:771–777CrossRefPubMedGoogle Scholar
  20. 20.
    Machado RSA, da Fonseca MG, Arakaki LNH, Espinola JGP, Oliveira SF (2004) Silica gel containing sulfur, nitrogen and oxygen as adsorbent centers on surface for removing copper from aqueous/ethanolic solutions. Talanta 63:317–322CrossRefPubMedGoogle Scholar
  21. 21.
    El-Nahhal IM, El-Ashgar NM (2007) A review on polysiloxane-immobilized ligand systems: synthesis, characterization and applications. J Organomet Chem 692:2861–2886.  https://doi.org/10.1016/j.jorganchem.2007.03.009 CrossRefGoogle Scholar
  22. 22.
    Fujiwara ST, Gushikem Y, Alfaya RVS (2001) Adsorption of FeCl3, CuCl2 and ZnCl2 on silsesquioxane 3-n-propylpyridiniumchloride polymer film adsorbed on Al2O3 coated silica gel. Colloid Surf A 178:135–141CrossRefGoogle Scholar
  23. 23.
    Cesarino I, Cavalheiro ETG, Brett CMA (2010) Simultaneous determination of cadmium, lead, copper and mercury ions using organofunctionalized SBA-15 nanostructured silica modified graphite—polyurethane composite electrode. Electroanalysis 22:61–68.  https://doi.org/10.1002/elan.200900167 CrossRefGoogle Scholar
  24. 24.
    Etienne M, Bessiere J, Walcarius A (2001) Voltammetric detection of copper(II) at a carbon paste electrode containing an organically modified silica. Sens Actuators B 76:531–538CrossRefGoogle Scholar
  25. 25.
    Marino G, Bergamini MF, Teixeira MFS, Cavalheiro ETG (2003) Evaluation of a carbon paste electrode modified with organofunctionalized amorphous silica in the cadmium determination in a differential pulse anodic stripping voltammetric procedure. Talanta 59:1021–1028.  https://doi.org/10.1016/S0039-9140(03)00004-3 CrossRefPubMedGoogle Scholar
  26. 26.
    Mariame C, El Rhazi M, Adraoui I (2009) Determination of traces of copper by anodic stripping voltammetry at a rotating carbon paste disk electrode modified with poly(1,8-diaminonaphtalene). J Anal Chem 64:632–636CrossRefGoogle Scholar
  27. 27.
    Takeuchi RM, Santos AL, Medeiros MJ, Stradiotto NR (2009) Copper determination in ethanol fuel samples by anodic stripping voltammetry at a gold microelectrode. Microchim Acta 164:101–106CrossRefGoogle Scholar
  28. 28.
    Sherigara BS, Shivaraj Y, Mascarenhas RJ, Satpatic AK (2007) Simultaneous determination of lead, copper and cadmium onto mercury film supported on wax impregnated carbon paste electrode: assessment of quantification procedures by anodic stripping voltammetry. Electrochim Acta 52:3137–3142.  https://doi.org/10.1016/j.electacta.2006.09.055 CrossRefGoogle Scholar
  29. 29.
    Sherigara BS, Shivaraj Y, Mascarenhas RJ, Satpati AK (2007) Simultaneous determination of lead, copper and cadmium onto mercury film supported on wax impregnated carbon paste electrode—assessment of quantification procedures by anodic stripping voltammetry. Electrochim Acta 52:3137–3142.  https://doi.org/10.1016/j.electacta.2006.09.055 CrossRefGoogle Scholar
  30. 30.
    Walcarius A (2001) Electroanalysis with pure, chemically modified, and sol-gel-derived silica-based materials. Electroanal 13:701–718CrossRefGoogle Scholar
  31. 31.
    Chaperon S, Sauve S (2007) Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils. Soil Biol Biochem 39:2329–2338CrossRefGoogle Scholar
  32. 32.
    Parida KM, Rath D, Dash SS (2010) Synthesis, characterization and catalytic activity of copper incorporated and immobilized mesoporous MCM-41 in the single step amination of benzene. J Mol Catal A 318:85–93.  https://doi.org/10.1016/j.molcata.2009.11.011 CrossRefGoogle Scholar
  33. 33.
    Pissetti FL et al (2007) n-Propylpyridinium chloride-modified poly (dimethylsiloxane) elastomeric networks: preparation, characterization, and study of metal chloride adsorption from ethanol solutions. J Colloid Interface Sci 314:38–45.  https://doi.org/10.1016/j.jcis.2007.05.040 CrossRefPubMedGoogle Scholar
  34. 34.
    McCusker LB, Liebau F, Engelhardt G (2001) Nomenclature of structural and compositional characteristics of ordered microporous and mesoporous materials with inorganic hosts-(IUPAC recommendations 2001). Pure Appl Chem 73:381–394CrossRefGoogle Scholar
  35. 35.
    Yang JJ, ElNahhal IM, Chuang IS, Maciel GE (1997) Synthesis and solid-state NMR structural characterization of polysiloxane-immobilized amine ligands and their metal complexes. J Non-Cryst Solids 209:19–39CrossRefGoogle Scholar
  36. 36.
    Fakhfakh F, Baraket L, Fraile JM, Mayoral JA, Ghorbel A (2009) Synthesis of diamine functionalized mesoporous organosilicas with large pores. J Sol-Gel Sci Technol 52:388–397.  https://doi.org/10.1007/s10971-009-2039-6 CrossRefGoogle Scholar
  37. 37.
    Hamoudi S, El-Nemr A, Belkacemi K (2010) Adsorptive removal of dihydrogenphosphate ion from aqueous solutions using mono, di- and tri-ammonium-functionalized SBA-15. J Colloid Interface Sci 343:615–621.  https://doi.org/10.1016/j.jcis.2009.11.070 CrossRefPubMedGoogle Scholar
  38. 38.
    Dey RK, Oliveira FJVE., Airoldi C (2008) Mesoporous silica functionalized with diethylenetriamine moieties for metal removal and thermodynamics of cation-basic center interactions. Colloids Surf A 324:41–46.  https://doi.org/10.1016/j.colsurfa.2008.03.030 CrossRefGoogle Scholar
  39. 39.
    Zhang G et al (2010) Catalytic role of Cu sites of Cu/MCM-41 in phenol hydroxylation. Langmuir 26:1362–1371.  https://doi.org/10.1021/la902436s CrossRefPubMedGoogle Scholar
  40. 40.
    Choi YJ, Huh U, Luo TJM (2009) Spontaneous formation of silver nanoparticles in aminosilica. J Sol-Gel Sci Technol 51:124–132.  https://doi.org/10.1007/s10971-009-1934-1 CrossRefGoogle Scholar
  41. 41.
    Mohadesi A, Salmanipour A, Mohammadi SZ, Pourhatami A, Taher MA (2008) Stripping voltammetric determination of copper(II) on an overoxidized polypyrrole functionalized with Nitroso-R. J Braz Chem Soc 19:956–962CrossRefGoogle Scholar
  42. 42.
    de Sousa ER, Marques EP, Fernandes EN, Zhang JJ, Marques AL (2006) B. Graphite electrodes modified by 8-hydroxyquinolines and its application for the determination of copper in trace levels. J Braz Chem Soc 17:177–183CrossRefGoogle Scholar
  43. 43.
    Ambundo EA et al (1999) Influence of coordination geometry upon copper(II/I) redox potentials. Physical parameters for twelve copper tripodal ligand complexes. Inorg Chem 38:4233–4242CrossRefGoogle Scholar
  44. 44.
    Recommendations for the Definition (1987) Estimation and use of the detection limit. Analyst 112:199–204CrossRefGoogle Scholar
  45. 45.
    Alemu H, Chandravanshi BS (1998) Differential pulse anodic stripping voltammetric determination of copper(II) with N-phenylcinnamohydroxamic acid modified carbon paste electrodes. Anal Chim Acta 368:165–173.  https://doi.org/10.1016/S0003-2670(98)00019-1 CrossRefGoogle Scholar
  46. 46.
    Cesarino I, Marino G, Cavalheiro ETG (2010) A novel graphite-polyurethane composite electrode modified with thiol-organofunctionalized silica for the determination of copper ions in ethanol fuel. Fuel 89:1883–1888.  https://doi.org/10.1016/j.fuel.2009.11.037 CrossRefGoogle Scholar
  47. 47.
    Teixeira MF, Ramos LA, Fatibello-Filho O, Cavalheiro ET (2003) Carbon paste electrode modified with copper(II) phosphate immobilized in a polyester resin for voltammetric determination of l-ascorbic acid in pharmaceutical formulations. Anal Bioanal Chem 376:214–219.  https://doi.org/10.1007/s00216-003-1866-5 CrossRefPubMedGoogle Scholar
  48. 48.
    de Morais A et al (2012) Gold nanoparticles on a thiol-functionalized silica network for ascorbic acid electrochemical detection in presence of dopamine and uric acid. J Solid State Electrochem 16:2957–2966.  https://doi.org/10.1007/s10008-012-1701-z CrossRefGoogle Scholar
  49. 49.
    Mazloum-Ardakani M, Habibollahi F, Zare HR, Naeimi H, Nejati M (2009) Electrocatalytic oxidation of ascorbic acid at a 2,2′-(1,8-octanediylbisnitriloethylidine)-bis-hydroquinone modified carbon paste electrode. J Appl Electrochem 39:117–1124CrossRefGoogle Scholar
  50. 50.
    Cesarino I, Marino G, Matos Jdo R, Cavalheiro ET (2008) Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 nanostructured silica in the simultaneous determination of divalent lead, copper and mercury ions. Talanta 75:15–21.  https://doi.org/10.1016/j.talanta.2007.06.032 CrossRefPubMedGoogle Scholar
  51. 51.
    Ngeontae W, Aeungmaitrepirom W, Tuntulani T, Imyim A (2009) Highly selective preconcentration of Cu(II) from seawater and water samples using amidoamidoxime silica. Talanta 78:1004–1010.  https://doi.org/10.1016/j.talanta.2009.01.017 CrossRefPubMedGoogle Scholar
  52. 52.
    Pereira AS et al (2010) Preconcentration and determination of Cu(II) in a fresh water sample using modified silica gel as a solid-phase extraction adsorbent. J Hazard Mater 175:399–403.  https://doi.org/10.1016/j.jhazmat.2009.10.018 CrossRefPubMedGoogle Scholar
  53. 53.
    Oztekin Y et al (2012) Phenanthroline derivatives electrochemically grafted to glassy carbon for Cu(II) ion detection. Sens Actuators B.  https://doi.org/10.1016/j.snb.2012.01.025 CrossRefGoogle Scholar
  54. 54.
    Canpolat EC, Sar E, Coskun NY, Cankurtaran H (2007) Determination of trace amounts of copper in tap water samples with a calix[4]arene modified carbon paste electrode by differential pulse anodic stripping voltammetry. Electroanalysis 19:1109–1115.  https://doi.org/10.1002/elan.200603829 CrossRefGoogle Scholar
  55. 55.
    Sayen S, Walcarius A (2005) Electrochemical modulation of the ligand properties of organically modified mesoporous silicas. J Electroanal Chem 581:70–78CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Paulo Cesar Mendes Villis
    • 1
  • José Costa Sampaio Filho
    • 1
  • Wolia Costa Gomes
    • 1
  • Rita de Cassia Mendonça de Miranda
    • 1
  • Gilvanda Silva Nunes
    • 2
  • Fábio Luiz Pissetti
    • 3
  • Yoshitaka Gushikem
    • 4
  • Alzira Maria Serpa Lucho
    • 3
  1. 1.Laboratory of Materials and Electrochemistry– LMEUniversity of CEUMA - UNICEUMASão LuísBrazil
  2. 2.Nucleus of Pesticide Residue Analysis- NARPFederal University of Maranhão – UFMASão LuísBrazil
  3. 3.Institute of ChemistryFederal University of Alfenas – UNIFAL-MGAlfenasBrazil
  4. 4.Institute of ChemistryState University of Campinas - UNICAMP, Inorganic ChemistryCampinasBrazil

Personalised recommendations