Journal of Applied Electrochemistry

, Volume 48, Issue 6, pp 651–662 | Cite as

Effect of the pore size and surface modification of porous glass membranes on vanadium redox-flow battery performance

  • H. MögelinEmail author
  • A. Barascu
  • S. Krenkel
  • D. Enke
  • T. Turek
  • U. Kunz
Research Article


Porous glass (PG) offers the ability to vary pore sizes and modify surfaces, allowing membranes to be tailored for a given electrochemical application. In this contribution, the application of PG in all-vanadium redox-flow batteries (VFB) and the effect of surface modification with sulfonic acid groups were investigated, and the results were compared with those from well-known polymeric membranes. The performance of native and surface-modified PG membranes with pore sizes ranging from 2 to 20 nm and thicknesses of 300 and 500 µm was investigated by examining their self-discharge behavior, polarization curves and area resistance. A maximum power density of 77 mW cm−2 at a current density of 110 mA cm−2 was observed with the modified membrane 505FDS, and this density is approximately half the power density achieved with Nafion™ 117. The results can be related to the small vanadium crossover, high conductivity and chemical stability. Therefore, the great potential of PG membranes as separators in VFBs was shown.

Graphical Abstract


Vanadium redox-flow battery Porous glass membrane Pore size Surface modification 



The authors would like to thank the Energy Research Center of Lower Saxony (Energie-Forschungszentrum Niedersachsen) and are grateful for the funding provided by the Deutsche Forschungsgemeinschaft (DFG) [Project Numbers KU 853/15-1 and EN 942/6-1]. Additionally, the authors would like to thank Eisenhuth GmbH & Co. KG for providing bipolar plates and gaskets and their very constructive cooperation.

Supplementary material

10800_2018_1201_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 39 KB)


  1. 1.
    Fabjan C, Garche J, Harrer B, Jörissen L, Kolbeck C, Philippi F, Thomazic G, Wagner F (2001) The vanadium redox-battery: an efficient storage unit for photovoltaic systems. Electrochim Acta 47:825–831CrossRefGoogle Scholar
  2. 2.
    Jörissen L, Garche J, Fabjan C, Thomazic G (2004) Possible use of vanadium redox-flow batteries for energy storage in small grids and stand-alone photovoltaic systems. J Power Sources 127:98–104CrossRefGoogle Scholar
  3. 3.
    Chae S, Luo T, Moon GH, Ogieglo W, Kang YS, Wessling M (2016) Ultra-high proton/vanadium selectivity for hydrophobic polymer membranes with intrinsic nanopores for redox flow battery. Adv Energy Mater 6:1600517CrossRefGoogle Scholar
  4. 4.
    Park M, Ryu J, Wang W, Cho J (2016) Material design and engineering of next-generation flow-battery technologies, Nat Rev Mater. CrossRefGoogle Scholar
  5. 5.
    Leung P, Shah AA, Sanz L, Flox C, Morante JR, Xu Q, Mohamed MR, Ponce C, de Leon FC, Walsh (2017) Recent developments in organic redox flow batteries: a critical review. J Power Sources 360:243–283CrossRefGoogle Scholar
  6. 6.
    Leung P, Li X, Ponce de León C, Berlouis L, Low CTJ, Walsh FC (2012) Progress in redox flow batteries, remaining challenges and their applications in energy storage. R Soc Chem Adv 2:10125–10156Google Scholar
  7. 7.
    Ponce de León C, Frías-Ferrer A, González-García J, Szánto DA, Walsh FC (2006) Redox flow cells for energy conversion. J Power Sources 160:716–732CrossRefGoogle Scholar
  8. 8.
    Arenas-Martínez LF, Ponce de León C, Walsh FC (2017) Engineering aspects of the design, construction and performance of modular redox flow batteries for energy storage. J Energy Storage 11:119–153CrossRefGoogle Scholar
  9. 9.
    Kear G, Sha AA, Walsh FC (2011) Development of the all-vanadium redox flow battery or energy storage: a review of technological, financial and policy aspects. Int J Energy Res 36:1105–1120CrossRefGoogle Scholar
  10. 10.
    Minke C, Turek T (2018) Materials, system designs and modelling approaches in techno-economic assessment of all-vanadium redox flow batteries—a review. J Power Sources 376:66–81CrossRefGoogle Scholar
  11. 11.
    Skyllas-Kazacos M, Rychcik M, Robins RG, Fane AG, Green MA (1986) New all-vanadium redox flow cell. J Electrochem Soc. Accelerated Brief Communication,Google Scholar
  12. 12.
    Roznyatovskaya N, Herr T, Küttinger M, Fühl M, Noack J, Pinkwart K, Tübke J (2016) Towards an all-vanadium redox-flow battery electrolyte: electrooxidation of V(III) in V(IV)/V(III) redox couple. J Power Sources 302:79–83CrossRefGoogle Scholar
  13. 13.
    Parasuraman A, Lim TM, Menictas C, Skyllas-Kazacos M (2013) Review of material research and development for vanadium redox flow battery applications. Electrochim Acta 101:27–40CrossRefGoogle Scholar
  14. 14.
    Xi J, Wu Z, Qiu X, Chen L (2007) Nafion/SiO2 hybrid membrane for vanadium redox flow battery. J Power Sources 166:531–536CrossRefGoogle Scholar
  15. 15.
    Zhang H, Zhang H, Li X, Mai Z, Wei W (2012) Silica modified nanofiltration membranes with improved selectivity for redox flow battery application. Energy Environ Sci 5:6299–6303CrossRefGoogle Scholar
  16. 16.
    Li Y, Tay ZY, Li SFY (2017) Highly selective sulfonated poly(ether ether ketone)/titanium oxide composite membranes for vanadium redox flow batteries. J Membr Sci 539:197–205CrossRefGoogle Scholar
  17. 17.
    Slade SM, Campbell SA, Ralph TR, Walsh FC (2002) Ionic conductivity of an extruded Nafion 1100 EW series of membranes. J Electrochem Soc 149(12):A1556–A1564CrossRefGoogle Scholar
  18. 18.
    Slade SM, Smith JR, Campbell SA, Ralph TR, de León C, Walsh FC (2010) Characterisation of a re-cast composite Nafion™ 1100 series of proton exchange membranes incorporating inert inorganic oxide particles. Electrochimica Acta 55:6818–6829CrossRefGoogle Scholar
  19. 19.
    Fang B, Wei Y, Arai T, Iwasa S, Kumagai M (2003) Development of a novel redox flow battery for electricity storage system. J Appl Electrochem 33:197–203CrossRefGoogle Scholar
  20. 20.
    Enke D, Janowski F, Schwieger W (2003) Porous glasses in the 21st century—a short review. Microporous Mesoporous Mater 60(1–3):19–30CrossRefGoogle Scholar
  21. 21.
    Janowski F, Enke D (2002) In: Schüth F, Sing K.S.W., Weitkamp J (Hrsg) Handbook of porous solids, band 3.Wiley-VCH, Weinheim, p 1432CrossRefGoogle Scholar
  22. 22.
    Kikukawa T, Kuraoka K, Kawabe K, Yasuda K, Hirao K, Yazawa T (2004) Preparation of an organic-inorganic hybrid ionic conductive material with thermal and chemical stability. J Am Ceram Soc 87(3):504–506CrossRefGoogle Scholar
  23. 23.
    Mögelin H, Yao G, Zhong H, dos Santos AR, Barascu A, Meyer R, Krenkel S, Wassersleben S, Hickmann T, Enke D, Turek T, Kunz U (2018) Porous Glass Membranes for vanadium redox-flow-battery application—effect of pore size on the performance. J Power Sources 377:18–25CrossRefGoogle Scholar
  24. 24.
    Enke D, Otto K, Janowski F, Heyer W, Schwieger W, Gille W (2001) Two-phase porous silica: mesopores inside controlled pore glasses. J Mater Sci 36(9):2349–2357CrossRefGoogle Scholar
  25. 25.
    Kreisberg VA, Antropova TV (2014) Changing the relation between micro- and mesoporosity in porous glasses: the effect of different factors. Microporous Mesoporous Mater 190:128–138CrossRefGoogle Scholar
  26. 26.
    Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60(2):309–319CrossRefGoogle Scholar
  27. 27.
    Ravikovitch PI, Haller GL, Neimark AV (1998) Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts. Adv Colloid Interface Sci 76–77:203–226Google Scholar
  28. 28.
    Ravikovitch PI, Neimark AV (2001) Characterization of micro- and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method. J Phys Chem B 105:6817–6823CrossRefGoogle Scholar
  29. 29.
    Winardi S, Raghu SC, Oo MO, Yan Q, Wai N, Lim TM (2014) Sulfonated poly (ether ether ketone)-based proton exchange membranes for vanadium redox battery applications. J Membr Sci 450:313–322CrossRefGoogle Scholar
  30. 30.
    Seo SJ, Kim BC, Sung KW, Shim J, Jeon JD, Shin KH, Shin SH, Yun SH, Lee JY, Moon SH (2013) Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications. J Membr Sci 428:17–23CrossRefGoogle Scholar
  31. 31.
    Li X, Zhang H, Mai Z, Zhang H, Vankelecom I (2011) Ion exchange membranes for vanadium redox flow battery (VRB) applications. Energy Environ Sci 4:1147CrossRefGoogle Scholar
  32. 32.
    Arenas LF, Walsh FC, Ponce de Léon C (2015) 3D-printing of redox flow batteries for energy storage: a rapid prototype laboratory cell. J Solid State Sci Technol 4:3080–3085CrossRefGoogle Scholar
  33. 33.
    Becker M, Bredemeyer N, Tenhumberg N, Turek T (2016) Polarization curve measurements combined with potential probe sensing for determining current density distribution in vanadium redox-flow batteries. J Power Sources 307:826–833CrossRefGoogle Scholar
  34. 34.
    Mohamed MR, Ahmad H, Abu Seman MN, Razali S, Najib MS (2013) Electrical circuit model of a vanadium redox flow battery using extended Kalman filter. J Power Sources 239:284–293CrossRefGoogle Scholar
  35. 35.
    Dai W, Yu L, Li Z, Yan J, Liu L, Xi J, Qiu X (2014) Sulfonated Poly(ether ether ketone)/graphene composite membrane for vanadium redox flow battery. Electrochim Acta 132:200–207CrossRefGoogle Scholar
  36. 36.
    Qiu J, Li M, Ni J, Zhai M, Peng J, Xu L, Zhou H, Li J, Wei G (2007) Preparation of ETFE-based anion exchange membrane to reduce permeability of vanadium ions in vanadium redox battery. J Membr Sci 297:174–180CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Chemical and Electrochemical Process EngineeringClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.Energy Research CenterClausthal University of TechnologyGoslarGermany
  3. 3.Institute of Chemical TechnologyUniversität LeipzigLeipzigGermany

Personalised recommendations