Journal of Applied Electrochemistry

, Volume 48, Issue 4, pp 427–434 | Cite as

Effect of vanadium ion valence state on the deposition behaviour in molten salt electrolysis

  • Joachim Gussone
  • Chakradhar Reddy Yerragudi Vijay
  • Jan Haubrich
  • Ksenija Milicevic
  • Bernd Friedrich
Research Article
Part of the following topical collections:
  1. Electrochemical Processes


The electrodeposition process of vanadium from LiCl–KCl base electrolytes was investigated by means of cyclic voltammetry, galvanostatic electrolyses and micro analytical analysis of the deposits. It is demonstrated that the valence state of the vanadium ions has a critical influence on the feasibility of performing a reproducible and stable coating process aiming to obtain compact vanadium films. When the electrolyte contained predominantly trivalent vanadium ions, the process was unstable and the deposit consisted of dendrites. In contrast, making use of a comproportionation reaction of metallic vanadium and VCl3 to divalent vanadium ions led to a stable deposition behaviour and allowed to obtain thick deposits with high current efficiencies. The disadvantageous behaviour of melts with mostly trivalent ions is explained by the fact that deposition is interfered by the reduction of trivalent to divalent ions under limiting current conditions.

Graphical Abstract


Electrodeposition Molten salt Valence state Vanadium 



We thank the German Research Foundation (Deutsche Forschungsgesellschaft, DFG) for financially supporting the project (HA 4397/6-1, FR 1713/23-1).


  1. 1.
    Baroch EF (2000) Vanadium and vanadium alloys. Kirk-Othmer encyclopedia of chemical technology. Wiley, New YorkGoogle Scholar
  2. 2.
    Muroga T (2016) Vanadium for nuclear systems. Reference Module in Materials Science and Materials Engineering, Elsevier, AmsterdamGoogle Scholar
  3. 3.
    Moskalyk RR, Alfantazi AM (2003) Processing of vanadium: a review. Miner Eng 16(9):793–805CrossRefGoogle Scholar
  4. 4.
    Peters M, Leyens C (2002) Titan und Titanlegierungen. Wiley, WeinheimCrossRefGoogle Scholar
  5. 5.
    Lei KPV, Sullivan TA (1971) Electrorefining of vanadium prepared by carbothermic reduction of V2O5. Metall Trans 2:2312–2134CrossRefGoogle Scholar
  6. 6.
    Baker DH, Ramsdell JD (1960) Electrolytic vanadium and its properties. J Electrochem Soc 107(12):985–989CrossRefGoogle Scholar
  7. 7.
    Tripathy PK, Sehra JC, Bose DK, Singh RP (1996) Electrodeposition of vanadium from a molten salt bath. J Appl Electrochem 26(8):887–890CrossRefGoogle Scholar
  8. 8.
    Kazakova OS, Kuznetsov SA (2012) Electrochemical behavior and electrorefining of vanadium in melts containing titanium salts. ECS Trans 50(11):181–190CrossRefGoogle Scholar
  9. 9.
    Polovov IB, Tray ME, Chernyshov MV, Volkovich VA, Vasin BD, Rebrin OI (2014) Electrode processes in vanadium-containing chloride melts. In: Gaune-Escard M, Haarberg GM (eds) Molten salt chemistry and technology. Wiley, Hoboken, pp 257–281CrossRefGoogle Scholar
  10. 10.
    Gruen D, McBeth R (1962) Absorbtion spectra of the II, III, IV and V oxidation states of vanadium in LiCl-KCl eutectic octahedral-tetrahedral transformations of V (II) and V (III). J Phys Chem 66(1):57–65CrossRefGoogle Scholar
  11. 11.
    Chernyshov MV, Polovov IB, Volkovich VA, Vasin BD, Rebrin OI, Vonogradov KV, Griffiths TR (2010) Electronic absorption spectra of vanadium species in halide melts. ECS Trans 33(7):287–296CrossRefGoogle Scholar
  12. 12.
    Wei D, Okido M, Oki T (1994) Characteristics of titanium deposits by electrolysis in molten chloride-fluoride mixture. J Appl Electrochem 24(9):923–929CrossRefGoogle Scholar
  13. 13.
    Gillesberg B, Barner JHV, Bjerrum NJ, Lantelme F (1999) Niobium plating processes in alkali chloride melts. J Appl Electrochem 29(8):939–949CrossRefGoogle Scholar
  14. 14.
    Gussone J, Hausmann J (2011) Deposition of titanium on SiC fibres from chloride melts. J Appl Electrochem 41(6):657–662CrossRefGoogle Scholar
  15. 15.
    Chen Z, Li S, Wang Y, Li W, Wei C, Kong W, Jia X, Pei Q, Zhang W (2016) Electrochemical deposition of magnesium on SiC fibers from the LiCl-KCl-MgCl2 molten salt. J Electrochem Soc 9(163):522–525CrossRefGoogle Scholar
  16. 16.
    Milicevic K, Friedrich B, Gussone J, Haubrich J (2017) Anodic dissolution of vanadium in molten LiCl–KCl–TiCl2. J Appl Electrochem 47(5):573–581CrossRefGoogle Scholar
  17. 17.
    Berghoute Y, Salmi A, Lantelme F (1994) Internal reference systems for fused electrolytes. J Electroanal Chem 365(1–2):171–177CrossRefGoogle Scholar
  18. 18.
    Plambeck JA (1967) Electromotive force series in molten salts., J Chem Eng Data 12(1):77–82CrossRefGoogle Scholar
  19. 19.
    Bard AJ, Faulkner LR (2001) Electrochemical methods, fundamentals and applications, 2 edn. Wiley, New YorkGoogle Scholar
  20. 20.
    Mamantov G, Manning DL, Dale JM (1965) Reversible deposition of metals on solid electrodes by voltammetry with linearly varying potential. J Electroanal Chem 9(4):253–259Google Scholar
  21. 21.
    Berzins T, Delahay P (1953) Oscillographic polarographic waves for the reversible deposition of metals on solid electrodes. J Am Chem Soc 75(3):555–559CrossRefGoogle Scholar
  22. 22.
    Wranglén G (1960) Dendrites and growth layers in the electrocrystallization of metals., Electrochim Acta 2(1–3):130–143CrossRefGoogle Scholar
  23. 23.
    Cordner GDP, Worner HW (1951) Electrolytic preparation of titanium. Aust J Appl Sci 2:358–367Google Scholar
  24. 24.
    Kühnl H, Ehrlich P, Uihlein RD (1960) Die Abscheidung von Titanmetall durch Schmelzelektrolyse mit löslicher Anode. Z anorg allg Chem 306(5–6):246–259CrossRefGoogle Scholar
  25. 25.
    Polovov IB, Vasin BD, Abakumov AV, Rebrin OI, Chernyshov MV, Volkovich VA, Griffiths TR (2007) Thermodynamics of the formation of vanadium(II) complexes in chloride melts. ECS Trans 3(35):589–597CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Joachim Gussone
    • 1
  • Chakradhar Reddy Yerragudi Vijay
    • 1
  • Jan Haubrich
    • 1
  • Ksenija Milicevic
    • 2
  • Bernd Friedrich
    • 2
  1. 1.Institute of Materials ResearchGerman Aerospace Center (DLR)CologneGermany
  2. 2.IME Process Metallurgy and Metal RecyclingRWTH Aachen UniversityAachenGermany

Personalised recommendations