Advertisement

Journal of Applied Electrochemistry

, Volume 48, Issue 2, pp 211–219 | Cite as

DFT study of interaction of additives with Cu(111) surface relevant to Cu electrodeposition

  • Arezoo Dianat
  • Hongliu Yang
  • Manfred Bobeth
  • Gianaurelio Cuniberti
Research Article
  • 273 Downloads
Part of the following topical collections:
  1. Electrodeposition

Abstract

The interaction of additives and ions with the copper surface plays a crucial role in the copper electroplating process. In this work, the interaction of the additives polyethylene glycol (PEG) and bis(3-sulfopropyl)-disulfide (SPS) as well as of chloride with the Cu(111) surface is considered within the framework of density functional theory. In the presence of water, the adsorption energy of chloride diminishes by about 1 eV compared to the case in vacuum. The activation barrier for chloride desorption was found to be 0.8 eV. Simulations of the deposition of copper atoms on a Cl-covered copper surface revealed that Cl atoms are always displaced to the surface. Calculations of adsorption energies of additives in vacuum indicated that the accelerator molecule SPS is bound stronger to Cu(111) than the suppressor molecule PEG. A comparatively strong adsorption of additives was found on a copper surface covered with a Cl–Cu mixed layer. Investigation of the dynamics of additives on Cu(111) by means of first principles molecular dynamics revealed an occasional spontaneous decomposition of an SPS molecule into two MPS molecules.

Graphical Abstract

Keywords

Copper electrodeposition Damascene metallization Additives Adsorption energy Ab initio calculation 

Notes

Acknowledgements

This work was funded by the EFRE fund of the European Community and by funding of the State of Saxony of the Federal Republic of Germany, project EVOLVE (project number 100218333), and is supported by the Dresden Center for Computational Materials Science (DCCMS). We also acknowledge the support by the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden” (cfAED). We acknowledge the Center for Information Services and High Performance Computing (ZIH) at TU Dresden for computational resources. The authors thank Axel Preusse, Romy Liske, and other partners of the project EVOLVE for helpful discussions.

References

  1. 1.
    Andricacos PC, Uzoh C, Dukovic J, Horkanes J, Deligianni H (1998) Damascene copper electroplating for chip interconnections. IBM J Res Dev 42:567CrossRefGoogle Scholar
  2. 2.
    Kondo K, Akolkar RN, Barkey DP, Yokoi M (eds) (2014) Copper electrodeposition for nanofabrication of electronics devices. Springer, New YorkGoogle Scholar
  3. 3.
    Nagy Z, Blaudeau JP, Hung NC, Curtiss LA, Zurawski DJ (1995) Chloride ion catalysis of the copper deposition reaction. J Electrochem Soc 142:L87CrossRefGoogle Scholar
  4. 4.
    Moffat TP, Wheeler D, Josell D (2004) Electrodeposition of copper in the SPS-PEG-Cl-additive system. I. kinetic measurements: influence of SPS. J Electrochem Soc 151:C262CrossRefGoogle Scholar
  5. 5.
    Feng ZV, Li X, Gewirth AA (2003) Inhibition due to the interaction of polyethylene glycol, chloride, and copper in plating baths: a surface-enhanced raman study. J Phys Chem B 107:9415CrossRefGoogle Scholar
  6. 6.
    Guymon CG, Harb JN, Rowley RL, Wheeler DR (2008) MPSA effects on copper electrodeposition investigated by molecular dynamics simulations. J Chem Phys 128:044717CrossRefGoogle Scholar
  7. 7.
    Hai NTM, Huynh TTM, Fluegel A, Arnold M, Mayer D, Reckiern W, Bredow T, Broekmann P (2012) Competitive anion/anion interactions on copper surfaces relevant for damascene electroplating. Electrochim Acta 70:286CrossRefGoogle Scholar
  8. 8.
    Huynh TMT, Hai NTM, Broekmann P (2013) Quasi-reversible interaction of MPS and chloride on Cu(100) studied by in situ STM electrochemical/electroless deposition. J Electrochem Soc 160:D3063CrossRefGoogle Scholar
  9. 9.
    Huynh TMT, Weiss F, Hai NTM, Reckien W, Bredow T, Fluegel A, Arnold M, Mayer D, Keller H, Broekmann P (2013) On the role of halides and thiols in additive-assisted copper electroplating. Electrochim Acta 89:537CrossRefGoogle Scholar
  10. 10.
    Magnussen OM (2002) Ordered anion adlayers on metal electrode surfaces. Chem Rev 102:679CrossRefGoogle Scholar
  11. 11.
    Bae S-E, Gewirth AA (2006) In situ EC-STM studies of MPS, SPS, and chloride on Cu(100): structural studies of accelerators for dual damascene electrodeposition. Langmuir 22:10315CrossRefGoogle Scholar
  12. 12.
    Moffat TP, Yang LYO (2010) Accelerator surface phase associated with superconformal Cu electrodeposition. J Electrochem Soc 157:D228CrossRefGoogle Scholar
  13. 13.
    Kelly JJ, West AC (1998) Copper deposition in presence of polyethylene glycol: I. quartz crystal microbalance study. J Electrochem Soc 145:3477CrossRefGoogle Scholar
  14. 14.
    Kresse G, Hafner J (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys Rev B 49:14251CrossRefGoogle Scholar
  15. 15.
    Kresse G, Furthmueller J (1996) Efficient iterative schemes for Ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54:11169CrossRefGoogle Scholar
  16. 16.
    VandeVondele J, Hutter J (2007) Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J Chem Phys 127:114105CrossRefGoogle Scholar
  17. 17.
    Hutter J, Iannuzzi M, Schiffmann F, VandeVondele J (2014) CP2K: atomistic simulations of condensed matter systems. Compt Mol Sci 4:15CrossRefGoogle Scholar
  18. 18.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865CrossRefGoogle Scholar
  19. 19.
    Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comp Chem 27:1787CrossRefGoogle Scholar
  20. 20.
    Dow W-P, Huang H-S (2005) Roles of chloride ion in microvia filling by copper electrodeposition: I. studies using SEM and optical microscope. J Electrochem Soc 152:C67CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Ding G, Cheng P, Wang Hong (2014) Microstructures of copper electroplated through-silicon via characterized by electron backscattering diffraction technique. ECS Electrochem Lett 3:D23CrossRefGoogle Scholar
  22. 22.
    Lafouresse MC, Fukunaka Y, Homma T, Honjo S, Kikuchi S, Schwarzacher W (2011) Potential-dependent surface morphology and microtexture evolution of electrodeposited copper films. Electrochem Solid-State Lett 14:D77CrossRefGoogle Scholar
  23. 23.
    Chang JH, Huang CA, Hsu FY (2006) Electrocrystallization behavior of copper electrodeposited from aqueous sulfuric acid with thiourea and chloride additives. ECS Trans 2:329Google Scholar
  24. 24.
    Pavlova TV, Andryushechkin BV, Zhidomirov GM (2016) First-principle study of adsorption and desorption of chlorine on Cu(111) surface: does chlorine or copper chloride desorb? J Phys Chem C 120:2829CrossRefGoogle Scholar
  25. 25.
    Gossenberger F, Roman T, Gro A (2015) Equilibrium coverage of halides on metal electrodes. Surf Sci 631:17CrossRefGoogle Scholar
  26. 26.
    Tissandier MD, Cowen KA, Feng WY, Gundlach E, Cohen MH, Earhart AD, Coe JV (1998) The proton’s absolute aqueous enthalpy and gibbs free energy of solvation from cluster-ion solvation data. J Phys Chem A 102:7787CrossRefGoogle Scholar
  27. 27.
    Broekmann P, Wilms M, Kruft M, Stuhlmann C, Wandelt K (1999) In-situ STM investigation of specific anion adsorption on Cu(111). J Electroanal Chem 467:307CrossRefGoogle Scholar
  28. 28.
    Magnussen OM, Behm RJ (1999) Atomic-scale processes in Cu corrosion and corrosion inhibition. Mater Res Bull 24:16CrossRefGoogle Scholar
  29. 29.
    Karimi M, Tomkowski T, Vidali G, Biham O (1995) Diffusion of Cu on Cu surfaces. Phys Rev B 52:5364CrossRefGoogle Scholar
  30. 30.
    Yokoi M, Konishi S, Hayashi T (1984) Adsorption behavior of polyoxyethyleneglycole on the copper surface in an acid copper sulfate bath. Denki Kagaku 52:218Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Arezoo Dianat
    • 1
  • Hongliu Yang
    • 1
  • Manfred Bobeth
    • 1
  • Gianaurelio Cuniberti
    • 1
    • 2
    • 3
  1. 1.Institute for Materials Science and Max Bergmann Center of BiomaterialsTU DresdenDresdenGermany
  2. 2.Dresden Center for Computational Materials Science (DCMS)TU DresdenDresdenGermany
  3. 3.Center for Advancing Electronics DresdenTU DresdenDresdenGermany

Personalised recommendations