Advertisement

Journal of Applied Electrochemistry

, Volume 48, Issue 2, pp 221–232 | Cite as

Ultra-low loading Pt-sputtered gas diffusion electrodes for oxygen reduction reaction

  • Gustav Sievers
  • Tanja Vidakovic-Koch
  • Christian Walter
  • Florian Steffen
  • Sven Jakubith
  • Angela Kruth
  • Dana Hermsdorf
  • Kai Sundmacher
  • Volker Brüser
Research Article
Part of the following topical collections:
  1. Fuel cells

Abstract

Ultra-low Pt-loaded (3–54 µg cm− 2) gas diffusion electrodes were prepared by a direct current unbalanced magnetron sputtering process. Pt films were deposited directly onto the microporous layer of the gas diffusion electrode and tested in a half-cell and proton exchange membrane fuel cell. While the apparent activity towards oxygen reduction reaction under half-cell conditions is dependent on Pt loading, mass activity is Pt loading independent, indicating constant catalyst utilization. Assuming the validity of the porous electrode model, kinetic parameters are extracted from the experimental data. Unlike the results from the half-cell study, the U–I curves of the proton exchange membrane fuel cell at different loadings show a decrease of the catalyst utilization at higher Pt loadings. The Pt structure on the gas diffusion electrode was investigated by electron microscopy, atomic force microscopy and X-ray diffraction.

Graphical Abstract

Keywords

Magnetron sputtering Platinum Rotating disc electrode Gas diffusion electrodes Polymer electrolyte fuel cell PVD Mass transfer 

Notes

Acknowledgements

TVK gratefully acknowledges the financial support by German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) within the framework of the project Grant VI 845/1-1. The authors would like to thank S. Wandenälis for proof-reading of the manuscript.

Supplementary material

10800_2018_1149_MOESM1_ESM.doc (3 mb)
Supplementary material 1 (DOC 3079 KB)

References

  1. 1.
    Barbir F (2005) PEM fuel cells: theory and practice. Elsevier, AmsterdamGoogle Scholar
  2. 2.
    Speder J, Altmann L, Roefzaad M et al (2013) Pt based PEMFC catalysts prepared from colloidal particle suspensions—a toolbox for model studies. Phys Chem Chem Phys 15:3602–3608.  https://doi.org/10.1039/c3cp50195g CrossRefGoogle Scholar
  3. 3.
    Stephens IEL, Rossmeisl J, Chorkendorff I (2016) Toward sustainable fuel cells. Science 354:1378CrossRefGoogle Scholar
  4. 4.
    Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51.  https://doi.org/10.1038/nature11115 CrossRefGoogle Scholar
  5. 5.
    Li M, Li M, Zhao Z et al (2016) Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354:1414.  https://doi.org/10.1126/science.aaf9050 CrossRefGoogle Scholar
  6. 6.
    Nesselberger M, Roefzaad M, Fayçal Hamou R et al (2013) The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters. Nat Mater 12:1–6.  https://doi.org/10.1038/nmat3712 CrossRefGoogle Scholar
  7. 7.
    Eikerling M, Kornyshev AA, Kucernak AR (2006) Water in polymer electrolyte fuel cells: friend or foe?. Phys Today 59:38–44.  https://doi.org/10.1063/1.2387087 CrossRefGoogle Scholar
  8. 8.
    Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers, fundamentals and applications. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Lazar F, Morin a, Pauc N et al (2012) Supported platinum nanotubes array as new fuel cell electrode architecture. Electrochim Acta 78:98–108.  https://doi.org/10.1016/j.electacta.2012.05.114 CrossRefGoogle Scholar
  10. 10.
    Debe MK (2013) Tutorial on the fundamental characteristics and practical properties of nanostructured thin film (NSTF) catalysts. J Electrochem Soc 160:F522–F534.  https://doi.org/10.1149/2.049306jes CrossRefGoogle Scholar
  11. 11.
    Gruber D, Ponath N, Müller J, Lindstaedt F (2005) Sputter-deposited ultra-low catalyst loadings for PEM fuel cells. J Power Sources 150:67–72.  https://doi.org/10.1016/j.jpowsour.2005.02.076 CrossRefGoogle Scholar
  12. 12.
    Hirano S, Kim J, Srinivasan S (1997) High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes. Electrochim Acta 42:1587–1593CrossRefGoogle Scholar
  13. 13.
    Schwanitz B, Schulenburg H, Horisberger M et al (2011) Stability of ultra-low Pt anodes for polymer electrolyte fuel cells prepared by magnetron sputtering. Electrocatalysis 2:35CrossRefGoogle Scholar
  14. 14.
    Schwanitz B (2012) Reduzierung der Platinbeladung und Imaging von Alterungsphaenomenen in der Polymerelektrolyt-BrennstoffzelleGoogle Scholar
  15. 15.
    Slavcheva E, Topalov G, Ganske G et al (2010) Influence of sputtering pressure on surface structure and oxygen reduction reaction catalytic activity of thin platinum films. Electrochim Acta 55:8992–8997.  https://doi.org/10.1016/j.electacta.2010.08.047 CrossRefGoogle Scholar
  16. 16.
    Yamada K, Miyazaki K, Koji S et al (2008) Catalytic performance of Pt film with dendritic structure for PEFC. J Power Sources 180:181–184.  https://doi.org/10.1016/j.jpowsour.2008.02.059 CrossRefGoogle Scholar
  17. 17.
    Dilonardo E, Milella A, Palumbo F et al (2010) One-step plasma deposition of platinum containing nanocomposite coatings. Plasma Process Polym 7:51–58.  https://doi.org/10.1002/ppap.200900118 CrossRefGoogle Scholar
  18. 18.
    Huang K, Lai Y, Tsai C (2006) Effects of sputtering parameters on the performance of electrodes fabricated for proton exchange membrane fuel cells. 156:pp 224–231Google Scholar
  19. 19.
    Sievers G, Quade A, Kruth A, Brueser V (2016) Combined balanced magnetron sputtering and substrate-annealing synthesis for Pt and Pt/C oxygen reduction catalysts. J Electrochem Soc 163:F341–F346.  https://doi.org/10.1149/2.0351605jes CrossRefGoogle Scholar
  20. 20.
    O’Hayre R, Lee S-J, Cha S-W, Prinz F (2002) A sharp peak in the performance of sputtered platinum fuel cells at ultra-low platinum loading. J Power Sources 109:483–493.  https://doi.org/10.1016/S0378-7753(02)00238-0 CrossRefGoogle Scholar
  21. 21.
    Transactions ECS, Society TE (2017) Oxygen reduction reaction activity of platinum thin films with different densities B. Ergul 80:847–852Google Scholar
  22. 22.
    Keijser T, Langford J, Mittemeijer E, Vogels A (1982) J Appl Crystallogr 15:308–314CrossRefGoogle Scholar
  23. 23.
    Sievers G, Mueller S, Quade A et al (2014) Mesoporous Pt–Co oxygen reduction reaction (ORR) catalysts for low temperature proton exchange membrane fuel cell synthesized by alternating sputtering. J Power Sources 268:255–260.  https://doi.org/10.1016/j.jpowsour.2014.06.013 CrossRefGoogle Scholar
  24. 24.
    Himanen O, Hottinen T, Tuurala S (2007) Operation of a planar free-breathing PEMFC in a dead-end mode. Electrochem commun 9:891–894.  https://doi.org/10.1016/j.elecom.2006.12.002 CrossRefGoogle Scholar
  25. 25.
    Zalitis CM, Kramer D, Kucernak AR (2013) Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport. Phys Chem Chem Phys PCCP 15:4329–4340.  https://doi.org/10.1039/c3cp44431g CrossRefGoogle Scholar
  26. 26.
    Shinozaki K, Zack JW, Richards RM et al (2015) Oxygen reduction reaction measurements on platinum electrocatalysts utilizing rotating disk electrode technique: I. Impact of impurities, measurement protocols and applied corrections. J Electrochem Soc 162:F1144–F1158.  https://doi.org/10.1149/2.1071509jes CrossRefGoogle Scholar
  27. 27.
    Zalitis CM, Kramer D, Kucernak AR (2013) Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport. Phys Chem Chem Phys 15:4329–4340.  https://doi.org/10.1039/c3cp44431g CrossRefGoogle Scholar
  28. 28.
    Eikerling M, Ioselevich AS, Kornyshev AA (2004) How good are the electrodes we use in PEFC?. Fuel Cells 4:131–140.  https://doi.org/10.1002/fuce.200400029 CrossRefGoogle Scholar
  29. 29.
    Vidakovic-Koch T, Hanke-Rauschenbach R, Gonzalez-Martinez I, Sundmacher K (2016) Catalyst layer modeling. In: Breitkopf S-L (ed) Handbook of electrochemical energy, Springer, Berlin, pp 259–285Google Scholar
  30. 30.
    Takasu Y, Ohashi N, Zhang XG et al (1996) Size effects of platinum particles on the electroreduction of oxygen. Electrochim Acta 41:2595–2600.  https://doi.org/10.1016/0013-4686(96)00081-3 CrossRefGoogle Scholar
  31. 31.
    Topalov A, Katsounaros I, Auinger M et al (2012) Dissolution of platinum: limits for the deployment of electrochemical energy conversion?. Angew Chem 51:12613–12615.  https://doi.org/10.1002/anie.201207256 CrossRefGoogle Scholar
  32. 32.
    Antoine O, Bultel Y, Durand R (2001) Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion®. J Electroanal Chem 499:85–94CrossRefGoogle Scholar
  33. 33.
    Kaskiala T (2002) Determination of oxygen solubility in aqueous sulphuric acid media. Miner Eng 15:853–857.  https://doi.org/10.1016/S0892-6875(02)00089-4 CrossRefGoogle Scholar
  34. 34.
    Sethuraman VA, Khan S, Jur JS et al (2009) Measuring oxygen, carbon monoxide and hydrogen sulfide diffusion coefficient and solubility in Nafion membranes. Electrochim Acta 54:6850–6860.  https://doi.org/10.1016/j.electacta.2009.06.068 CrossRefGoogle Scholar
  35. 35.
    Sambandam S, Parrondo J, Ramani V (2013) Estimation of electrode ionomer oxygen permeability and ionomer-phase oxygen transport resistance in polymer electrolyte fuel cells. Phys Chem Chem Phys 15:14994–15002.  https://doi.org/10.1039/c3cp51450a CrossRefGoogle Scholar
  36. 36.
    Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1:105–116CrossRefGoogle Scholar
  37. 37.
    Gasda MD, Teki R, Lu T-M et al (2009) Sputter-deposited Pt PEM fuel cell electrodes: particles vs layers. J Electrochem Soc 156:B614–B619CrossRefGoogle Scholar
  38. 38.
    Brouzgou A, Song SQ, Tsiakaras P (2012) Low and non-platinum electrocatalysts for PEMFCs: current status, challenges and prospects. Appl Catal B 127:371–388.  https://doi.org/10.1016/j.apcatb.2012.08.031 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Leibniz Institute for Plasma Technology and ScienceGreifswaldGermany
  2. 2.Max Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany
  3. 3.EKPRO GmbHBerlinGermany

Personalised recommendations