Advertisement

A new porous copolymer electrocatalyst: the optimal synthesis, characterization, and application for the measurement of amoxicillin

  • Azam Farshadinia
  • Majid KolahdoozanEmail author
Research Article
  • 22 Downloads
Part of the following topical collections:
  1. Sensors
  2. Sensors
  3. Sensors

Abstract

The poly(diphenylamine) and poly(4,4′-diaminodiphenyl ether) represent poor current signals and activity. This paper has aimed to synthesize the poly(diphenylamine-co-4,4′-diaminodiphenyl ether) for the first time to overcome these deficiencies. Regarding the reaction circumstances, the potential range of 0–1000 mV was applied to the 1:1 mixture of 0.02 M monomers and 4 M \(~{{\text{H}}_2}{\text{S}}{{\text{O}}_4}\) solution (without organic additives) at 20 mV \({{\text{s}}^{ - 1}}\) scan rate, resulting in quasi-reversible electro-chemisorption of 3D copolymer clusters (85.50–96.27 nm) on the surface of a handmade inexpensive electrode prepared under the \({\text{E}}{({\text{CCE}})_{\text{n}}}\) mechanism. This copolymer electrode was characterized and optimized with cyclic voltammetry (CV), FTIR, and FESEM-EDS techniques. The electrode has shown high electrochemical stability, high electroactivity, as well as thin-film behavior. Therefore, it was used as a new catalytic electrode for non-enzymatic amoxicillin sensing through CV and differential pulse voltammetry (DPV) with a detection limit of 1 × \({10^{ - 6}}\) M and recovery of 99.99% ± 0.04% in the linear range of 2 × \({10^{ - 5}}\)–4 × \({10^{ - 4}}\) M.

Graphical Abstract

Keywords

Modified catalytic electrodes Thin-film electrodes Cyclic voltammetry Differential pulse voltammetry Electrochemical synthesis Electro-sensor 

Notes

References

  1. 1.
    Anastas PT, Boethling R, Voutchkova-kostal A (2013) Green processes: designing safer chemicals. Wiley-VCH, GermanyGoogle Scholar
  2. 2.
    Rosy, Goyal RN (2015) Estimation of amoxicillin in presence of high concentration of uric Acid and other urinary metabolites using an unmodified pyrolytic graphite sensor. J Electrochem Soc 162:G8–G13CrossRefGoogle Scholar
  3. 3.
    Khasanah, Reddy KR, Ogawa S, Sato H, Takahashi I, Ozaki Y (2016) Evolution of intermediate and highly ordered crystalline states under spatial confinement in poly (3-hydroxybutyrate) ultrathin films. Macromolecules 49:4202–4210CrossRefGoogle Scholar
  4. 4.
    Zhu X, Zhang K, Wang C, Guan J, Yuan X, Li B (2016) Quantitative determination and toxicity evaluation of 2, 4-dichlorophenol using poly (eosin Y)/hydroxylated multi-walled carbon nanotubes modified electrode. Sci Rep 6:38657CrossRefGoogle Scholar
  5. 5.
    Zhu C, Yang G, Li H, Du D, Lin Y (2015) Electrochemical sensors and biosensors based on nanomaterials and nanostructures. Anal Chem 87:230–249CrossRefGoogle Scholar
  6. 6.
    Wang Y, Guan XN, Wu C-Y, Chen M-T, Hsieh H-H, Tran HD, Huang S-C, Kaner RB (2013) Processable colloidal dispersions of polyaniline-based copolymers for transparent electrodes. Polym Chem 4:4814–4820CrossRefGoogle Scholar
  7. 7.
    Mu S (2014) The electrochemical synthesis and properties of poly (aniline-co-diphenylamine and 5-aminosalicylic acid) with p-type doping and n-type doping. Electrochim Acta 144:243–253CrossRefGoogle Scholar
  8. 8.
    Andreescu D, Sadikz OA (2005) Synthesis of polyoxydianiline membranes onto gold electrodes an electrochemical study. J Electrochem Soc 152:E299–E307CrossRefGoogle Scholar
  9. 9.
    Zaragoza-Contreras EA, Hernandez-Escobar CA, Estrada-Monje A, Kobayashi T (2016) Synthesis of diphenylamine-co-aniline copolymers in emulsified systems using a reactive surfactant as the emulsifying agent and aniline monomer. Synth Met 214:5–13CrossRefGoogle Scholar
  10. 10.
    Sharma PS, Pietrzyk-Le A, D’Souza F, Kutner W (2012) Electrochemically synthesized polymers in molecular imprinting for chemical sensing. Anal Bioanal Chem 402:3177–3204CrossRefGoogle Scholar
  11. 11.
    Zhang C, Hua C, Wang G, Ouyang M, Ma C (2010) A novel multichromic copolymer via electrochemical copolymerization of (S)-1,1′-binaphthyl-2,2′-diyl bis(N-(6-hexanoic acid-1-yl) pyrrole) and 3,4-ethylenedioxythiophene. Electrochim Acta 55:4103–4111CrossRefGoogle Scholar
  12. 12.
    Kozhunova EY, Gavrilov AA, Zaremski MY, Chertovich AV (2017) Copolymerization on selective substrates: experimental test and computer simulations. Langmuir 33:3548–3555CrossRefGoogle Scholar
  13. 13.
    Hu Y, Wang Z, Lin K, Xu J, Duan X, Zhao F, Hou J, Jiang F (2016) Electrosynthesis and electrochromic properties of free-standing copolymer based on oligo(oxyethylene) cross-linked 2,2′-bithiophene and 3,4-ethylenedioxythiophene. J Polym Sci A 54:1583–1592CrossRefGoogle Scholar
  14. 14.
    Holmes AH, Moore LSP, Sundsfjord A, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJV (2016) Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 378:176–187CrossRefGoogle Scholar
  15. 15.
    Wright PM, Seiple IB, Myers AG (2014) The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int Ed 53:8840–8869CrossRefGoogle Scholar
  16. 16.
    Brown D (2015) Antibiotic resistance breakers: can repurposed drugs fill the antibiotic discovery void? Nat Rev Drug Discov 14:821–832CrossRefGoogle Scholar
  17. 17.
    Aga DS, Lenczewski M, Snow D, Muurinen J, Sallach JB, Wallace JS (2016) Challenges in the measurement of antibiotics and in evaluating their impacts in agroecosystems: a critical review. J Environ Qual 45:407–419CrossRefGoogle Scholar
  18. 18.
    Lan L, Yao Y, Ping J, Ying Y (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 91:504–514CrossRefGoogle Scholar
  19. 19.
    Kwok K (2007) Investigation of various analytical methods for the identification and quantification of active pharmaceutical ingredients. Dissertation, Northern Illinois UniversityGoogle Scholar
  20. 20.
    Prasad KS, Chuang MC, Ho JAA (2012) Synthesis, characterization, and electrochemical applications of carbon nanoparticles derived from castor oil soot. Talanta 88:445–449CrossRefGoogle Scholar
  21. 21.
    Satpati AK, Bard AJ (2012) Preparation and characterization of carbon powder paste ultramicroelectrodes as tips for scanning electrochemical microscopy applications. Anal Chem 84:9498–9504CrossRefGoogle Scholar
  22. 22.
    Adams RN (1958) Carbon paste electrodes. Anal Chem 30:1576–1576CrossRefGoogle Scholar
  23. 23.
    Heinze J, Frontana-Uribe BA, Ludwigs S (2010) Electrochemistry of conducting polymers—persistent models and new concepts. Chem Rev 110:4724–4771CrossRefGoogle Scholar
  24. 24.
    Damiati S, Peacock M, Leonhardt S, Damiati L, Baghdadi MA, Becker H, Kodzius R, Schuster B (2018) Embedded disposable functionalized electrochemical biosensor with a 3D-printed flow cell for detection of hepatic oval cells (HOCs). Genes 9:89–99CrossRefGoogle Scholar
  25. 25.
    Pang Y, Xu H, Li X, Ding H, Cheng Y, Shi G, Jin L (2006) Electrochemical synthesis, characterization, and electrochromic properties of poly(3-chlorothiophene) and its copolymer with 3-methylthiophene in a room temperature ionic liquid. Electrochem Commun 8:1757–1763CrossRefGoogle Scholar
  26. 26.
    Zaikowski L, Kaur P, Gelfond C, Selvaggio E, Asaoka S, Wu Q, Chen H-C, Takeda N, Cook AR, Yang A, Rosanelli J, Miller JR (2012) Polarons, bipolarons, and side-by-side polarons in reduction of oligofluorenes. J Am Chem Soc 134:10852–10863CrossRefGoogle Scholar
  27. 27.
    Di B, Meng Y, Wang YD, Liu XJ, An Z (2011) Formation and evolution dynamics of bipolarons in conjugated polymers. J Phys Chem B 115:964–971CrossRefGoogle Scholar
  28. 28.
    Lippe J, Holze R (1991) Electrochemical in-situ conductivity and polaron concentration measurements at selected conducting polymers. Synth Met 43:2927–2930CrossRefGoogle Scholar
  29. 29.
    Reghum M, Subramanyam SV (1991) The contribution of polarons, bipolarons and intersite tunneling to low temperature conductivity in doped polypyrrole. Synth Met 41:455–458CrossRefGoogle Scholar
  30. 30.
    Sun Z, Li Y, Gao K, Liu DS, An Z, Xie SJ (2010) Dynamical study of polaron–bipolaron scattering in conjugated polymers. Org Electron 11:279–284CrossRefGoogle Scholar
  31. 31.
    Iadonisi G, Cataudella V, Ninno D, Chiofalo ML (1995) Polaron and bipolaron coexistence in high superconductivity. Phys Lett A 196:359–364CrossRefGoogle Scholar
  32. 32.
    Chen Y, Zhao Y, Liang Z (2015) Solution processed organic thermoelectrics: towards flexible thermoelectric modules. Energy Environ Sci 8:401–422CrossRefGoogle Scholar
  33. 33.
    Popa OM, Diculescu VC (2013) Electrochemical behaviour of isoflavones genistein and biochanin a at a glassy carbon electrode. Electroanalysis 25:1201–1208CrossRefGoogle Scholar
  34. 34.
    Wold DJ, Haag R, Rampi MA, Frisbie CD (2002) distance dependence of electron tunneling through self-assembled monolayers measured by conducting probe atomic force microscopy: unsaturated versus saturated molecular junctions. J Phys Chem B 106:2813–2816CrossRefGoogle Scholar
  35. 35.
    Kannan A, Sivanesan A, Kalaivani G, Manivel A, Sevvel R (2016) A highly selective and simultaneous determination of ascorbic acid, uric acid and nitrite based on a novel poly-N-acetyl-L-methionine (poly-NALM) thin film. RSC Adv 6:96898–96907CrossRefGoogle Scholar
  36. 36.
    Kim DM, Shim KB, Son JI, Reddy SS, Shim YB (2013) Spectroelectrochemical and electrochromic behaviors of newly synthesized poly [3′-(2-aminopyrimidyl)-2,2′:5′,2″-terthiophene]. Electrochim Acta 104:322–329CrossRefGoogle Scholar
  37. 37.
    Vivier V, Cachet-Vivier C, Regis A, Sagon G, Nedelec J-Y, Yu L (2002) Electrochemical study of the degradation kinetics of polyaniline powder in sulfuric and hydrochloric acid media. J Solid State Electrochem 6:522–527CrossRefGoogle Scholar
  38. 38.
    Astratine L, Magner E, Cassidy J, Betts A (2014) Electrodeposition and characterisation of copolymers based on pyrrole and 3,4-ethylenedioxythiophene in BMIM using a microcell configuration. Electrochim Acta 115:440–448CrossRefGoogle Scholar
  39. 39.
    Guler FG, Sarac AS (2011) Electrochemical synthesis of Poly [3, 4-Propylenedioxythiophene-co-N-Phenylsulfonyl Pyrrole]: Morphological, electrochemical and spectroscopic characterization. Express Polym Lett 5:493–505CrossRefGoogle Scholar
  40. 40.
    Manisankar P, Vedhi C, Selvanathan G, Gurumallesh Prabu H (2006) Electrochemical synthesis and characterization of novel electrochromic poly (3,4-ethylenedioxythiophene-co-Diclofenac) with surfactants. Electrochim Acta 51:2964–2970CrossRefGoogle Scholar
  41. 41.
    Das I, Goel N, Kumar Gupta S, Agrawal NR (2012) Electropolymerization of pyrrole: Dendrimers, nano-sized patterns and oscillations in potential in presence of aromatic and aliphatic surfactants. J Electroanal Chem 670:1–10CrossRefGoogle Scholar
  42. 42.
    Qiu Y, Lu S, Wang S, Zhang X, He S, He T (2014) High-performance polyaniline counter electrode electropolymerized in presence of sodium dodecyl sulfate for dye-sensitized solar cells. J Power Sources 253:300–304CrossRefGoogle Scholar
  43. 43.
    Yang Q, Zhang Y, Li H, Zhang Y, Liu M, Luo J, Tan L, Tang H, Yao S (2010) Electrochemical copolymerization study of o-toluidine and o-aminophenol by the simultaneous EQCM and in situ FTIR spectroelectrochemistry. Talanta 81:664–672CrossRefGoogle Scholar
  44. 44.
    Maiti S, Das D, Sen K (2012) Electrochemical polymerization of pyrrole: key process control parameters. J Electrochem Soc 159:E154–E158CrossRefGoogle Scholar
  45. 45.
    Fisyuk AS, Demadrille R, Querner C, Zagorska M, Bleusece J, Pron A (2005) Mixed alkylthiophene-based heterocyclic polymers containing oxadiazole units via electrochemical polymerisation: spectroscopic, electrochemical and spectroelectrochemical properties. New J Chem 29:707–713CrossRefGoogle Scholar
  46. 46.
    Senger RT, Ercelebi A (2002) Strong-coupling theory of two dimensional large bipolarons in elliptical quantum dots. Eur Phys J B 26:253–260CrossRefGoogle Scholar
  47. 47.
    Palaniappan S, Manisankar P (2011) Electrochemical synthesis and characterization of poly (aniline-co-1-amino-9,10-anthraquinone), a nanosized conducting copolymer. J Polym Res 18:311–317CrossRefGoogle Scholar
  48. 48.
    Satyanarayana N, Sinha SK, Lim SC (2009) Highly wear resistant chemisorbed polar ultra-high-molecular-weight polyethylene thin film on Si surface for micro-system applications. J Mater Res 24:3331–3337CrossRefGoogle Scholar
  49. 49.
    Cuartero M, Crespo GA, Ghahraman Afshar M, Bakker E (2014) Exhaustive thin-layer cyclic voltammetry for absolute multianalyte halide detection. Anal Chem 86:11387–11395CrossRefGoogle Scholar
  50. 50.
    Wiedner ES, Brown HJS, Helm ML (2016) Kinetic analysis of competitive electrocatalytic pathways: new insights into hydrogen production with nickel electrocatalysts. J Am Chem Soc 138:604–616CrossRefGoogle Scholar
  51. 51.
    Geisler M, Balzer BN, Hugel T (2009) Polymer adhesion at the solid-liquid interface probed by a single-molecule force sensor. Small 5:2864–2869CrossRefGoogle Scholar
  52. 52.
    Kubel C, Gonzalez-Ronda L, Drummy LF, Martin DC (2000) Defect-mediated curvature and twisting in polymer crystals. J Phys Org Chem 13:816–829CrossRefGoogle Scholar
  53. 53.
    Nie G, Xu J, Zhang S, Han X (2006) Electrodeposition of high-quality polycarbazole films in composite electrolytes of boron trifluoride diethyl etherate and ethyl ether. J Appl Electrochem 36:937–944CrossRefGoogle Scholar
  54. 54.
    Guo L, Searson PC (2010) On the influence of the nucleation overpotential on island growth in electrodeposition. Electrochim Acta 55:4086–4091CrossRefGoogle Scholar
  55. 55.
    Guo L, Oskam G, Radisic A, Hoffmann PM, Searson PC (2011) Island growth in electrodeposition. J Phys D 44:443001CrossRefGoogle Scholar
  56. 56.
    Radisic A, Vereecken PM, Searson PC, Ross FM (2006) The morphology and nucleation kinetics of copper islands during electrodeposition. Surf Sci 600:1817–1826CrossRefGoogle Scholar
  57. 57.
    Pavia DL, Lampman GM, Kriz GS, Vyvyan JA (2009) Introduction to spectroscopy. Cengage Learning Boston, USAGoogle Scholar
  58. 58.
    Ding C, Zhao F, Ren R, Lin J-M (2009) An electrochemical biosensor for alpha-fetoprotein based on carbon paste electrode constructed of room temperature ionic liquid and gold nanoparticles. Talanta 78:1148–1154CrossRefGoogle Scholar
  59. 59.
    Suda Y, Mizutani A, Harigai T, Takikawa H, Ue H, Umeda Y (2017) Influences of internal resistance and specific surface area of electrode materials on characteristics of electric double layer capacitors. AIP Conf Proc 1807:020022CrossRefGoogle Scholar
  60. 60.
    Guangli W, Luyi J, Xiuming W, Hui T, Xuan Y (2015) Preparation method of nanocluster mimic enzyme with visible-light activity and use of nanocluster mimic enzyme in colourimetry detection of trypsin. CN PatGoogle Scholar
  61. 61.
    Lee WM, Elliott JE, Brownsey RW (2005) Inhibition of acetyl-CoA carboxylase isoforms by pyridoxal phosphate. J Biol Chem 280:41835–41843CrossRefGoogle Scholar
  62. 62.
    Percival MD, Doherty K, Gresser MJ (1990) Inhibition of phosphoglucomutase by vanadate. Biochemistry 29:2764–2769CrossRefGoogle Scholar
  63. 63.
    Elkins-Kaufman E, Neurath H (1949) Structural requirements for specific inhibitors of carboxypeptidase. J Biol Chem 178:645–654Google Scholar
  64. 64.
    Brahman PK,. Dar RA, Pitre KS (2013) Conducting polymer film based electrochemical sensor for the determination of amoxicillin in micellar media. Sens Actuator B-Chem 176:307–314CrossRefGoogle Scholar
  65. 65.
    Yuan X, Yuan D, Zeng F, Zou W, Tzorbatzoglou F, Tsiakaras P, Wang Y (2013) Preparation of graphitic mesoporous carbon for the simultaneous detection of hydroquinone and catechol. Appl Catal B 129:367–374CrossRefGoogle Scholar
  66. 66.
    Dousa M, Hosmanova R (2005) Rapid determination of amoxicillin in premixes by HPLC. J Pharm Biomed Anal 37:373–377CrossRefGoogle Scholar
  67. 67.
    Ul ain N, Anis I, Ahmad F, Shah MR, Parveen S, Faizi S, Ahmed S (2018) Colorimetric detection of amoxicillin based on querecetagetin coated silver nanoparticles. Sens Actuator B-Chem 265:617–624CrossRefGoogle Scholar
  68. 68.
    Bergamini MF, Teixeira MFS, Dockal ER, Bocchi N, Cavalheiro ETG (2006) Evaluation of different voltammetric techniques in the determination of amoxicillin using a carbon paste electrode modified with [N, N ′-ethylenebis(salicylideneaminato)] oxovanadium (IV). J Electrochem Soc 153:E94–E98CrossRefGoogle Scholar
  69. 69.
    Hatamie A, Echresh A, Zargar B, Nur O, Willander M (2015) Fabrication and characterization of highly-ordered Zinc Oxide nanorods on gold/glass electrode, and its application as a voltammetric sensor. Electrochim Acta 174:1261–1267CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Chemistry, Shahreza BranchIslamic Azad UniversityShahrezaIran
  2. 2.Razi Chemistry Research Center (RCRC), Shahreza BranchIslamic Azad UniversityShahrezaIran

Personalised recommendations