Journal of Applied Electrochemistry

, Volume 46, Issue 7, pp 755–767 | Cite as

Material development and process optimization for gas-phase hydrogen chloride electrolysis with oxygen depolarized cathode

  • Rafael KuwertzEmail author
  • Isai Gonzalez Martinez
  • Tanja Vidaković-Koch
  • Kai Sundmacher
  • Thomas Turek
  • Ulrich Kunz
Research Article
Part of the following topical collections:
  1. Electrochemical Processes


In the present contribution, the gas-phase electrolysis of hydrogen chloride in a polymer electrolyte membrane electrolyzer was investigated in detail. Different graphite-based bipolar plate materials were tested for this purpose with the graphite-polymer compound BMA5 being the most suitable among the tested materials regarding porosity as well as corrosion stability and electrical conductivity. Investigation of the membrane pretreatment process revealed that the best results are obtained with sulfuric acid as proton donor. Furthermore, an optimized electrocatalyst distribution with asymmetrical loadings on anode and cathode was found to result in reduced cell voltage at considerably decreased overall noble metal content. Finally, the influence of the cathode gas humidification on the overall cell voltage as well as on the individual anode and cathode potentials, measured with reference electrodes, was determined. It could be shown that a relative humidity ranging from 60 to 80 % is optimal for operation of the gas-phase hydrogen chloride electrolyzer.

Graphical Abstract


Gas diffusion electrodes Chlorine recycling Electrolysis Gas-phase hydrogen chloride oxidation Oxygen reduction reaction (ORR) Membrane electrode assembly (MEA) 



The authors are grateful to the German Research Foundation (Deutsche Forschungs-gemeinschaft, DFG) for financial support of this research work under the Project Grants KU 853/5-1 and SU 189/4-1. In addition, we gratefully thank the Institute of Particle Technology at Clausthal University of Technology for the SEM images.


  1. 1.
    IHS Chemical Inc. (2014) IHS Chemical World Analysis—Chlor Alkali Report 2015Google Scholar
  2. 2.
    Jörissen J, Turek T, Weber R (2011) Chlorherstellung mit Sauerstoffverzehrkathoden. Energieeinsparung bei der Elektrolyse. Chem unserer Zeit 45(3):172–183. doi: 10.1002/ciuz.201100545 CrossRefGoogle Scholar
  3. 3.
    Six C, Richter F (2000) Isocyanates, organic. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co KGaA, Weinheim. doi: 10.1002/14356007.a14_611 Google Scholar
  4. 4.
    Hydrochloric Acid Electrolysis (2012) Thyssen Krupp Uhde. Accessed 28 Dec 2015
  5. 5.
    Deacon (1868) Improvement in the manufacture of Chlorine. US Patent US 85370, 1868Google Scholar
  6. 6.
    Perez-Ramirez J, Mondelli C, Schmidt T, Schluter OFK, Wolf A, Mleczko L, Dreier T (2011) Sustainable chlorine recycling via catalysed HCl oxidation: from fundamentals to implementation. Energy Environ Sci 4(12):4786–4799. doi: 10.1039/C1EE02190G CrossRefGoogle Scholar
  7. 7.
    Schmittinger P, Florkiewicz T, Curlin LC, Lüke B, Scannell R, Navin T, Zelfel E, Bartsch R (2000) Chlorine. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. doi: 10.1002/14356007.a06_399.pub3 Google Scholar
  8. 8.
    Mortensen M, Minet RG, Tsotsis TT, Benson S (1996) A two-stage cyclic fluidized bed process for converting hydrogen chloride to chlorine. Chem Eng Sci 51(10):2031–2039. doi: 10.1016/0009-2509(96)00060-7 CrossRefGoogle Scholar
  9. 9.
    Moussallem I, Jörissen J, Kunz U, Pinnow S, Turek T (2008) Chlor-alkali electrolysis with oxygen depolarized cathodes: history, present status and future prospects. J Appl Electrochem 38(9):1177–1194. doi: 10.1007/s10800-008-9556-9 CrossRefGoogle Scholar
  10. 10.
    Trainham JA, Law CG, Newman JS, Keating KB, Eames DJ (1995) Electrochemical conversion of anhydrous hydrogen halide to halogen gas using a cation-transporting membrane. US 5411641, 02 May 1995Google Scholar
  11. 11.
    Motupally S, Mah DT, Freire FJ, Weidner JW (1998) Recycling chlorine from hydrogen chloride. Electrochem Soc Interface 7(3):32–36Google Scholar
  12. 12.
    Kuwertz R, Martinez IG, Vidakovic-Koch T, Sundmacher K, Turek T, Kunz U (2013) Energy-efficient chlorine production by gas-phase HCl electrolysis with oxygen depolarized cathode. Electrochem Commun 34:320–322. doi: 10.1016/j.elecom.2013.07.035 CrossRefGoogle Scholar
  13. 13.
    Kuwertz R, Turek T, Kunz U, Vidakovic-Koch T, Martinez G, Sundmacher K (2013) Verfahren und Membranreaktor zur Herstellung von Chlor aus Chlorwasserstoffgas. DE102013009230A1, 31 May 2013Google Scholar
  14. 14.
    Martinez IG, Vidakovic-Koch T, Kuwertz R, Kunz U, Turek T, Sundmacher K (2013) The kinetics of hydrogen chloride oxidation. J Seribian Chem Soc 78(12):2115–2130CrossRefGoogle Scholar
  15. 15.
    Martinez IG, Vidaković-Koch T, Kuwertz R, Kunz U, Turek T, Sundmacher K (2014) Analysis of a novel chlorine recycling process based on anhydrous HCl oxidation. Electrochim Acta 123:387–394. doi: 10.1016/j.electacta.2014.01.050 CrossRefGoogle Scholar
  16. 16.
    Eames DJ, Newman J (1995) Electrochemical conversion of anhydrous HCl to Cl2 using a solid-polymer-electrolyte electrolysis cell. J Electrochem Soc 142(11):3619–3625CrossRefGoogle Scholar
  17. 17.
    Ticianelli EA, Derouin CR, Srinivasan S (1988) Localization of platinum in low catalyst loading electrodes to attain high power densities in SPE fuel cells. J Electroanal Chem Interfacial Electrochem 251(2):275–295. doi: 10.1016/0022-0728(88)85190-8 CrossRefGoogle Scholar
  18. 18.
    Zawodzinski TA, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water-uptake by and transport through Nafion® 117 membranes. J Electrochem Soc 140(4):1041–1047. doi: 10.1149/1.2056194 CrossRefGoogle Scholar
  19. 19.
    Lindermeir A, Rosenthal G, Kunz U, Hoffmann U (2004) On the question of MEA preparation for DMFCs. J Power Sources 129(2):180–187. doi: 10.1016/j.jpowsour.2003.11.002 CrossRefGoogle Scholar
  20. 20.
    He W, Nguyen TV (2004) Edge effects on reference electrode measurements in PEM fuel cells. J Electrochem Soc 151(2):A185–A195. doi: 10.1149/1.1634272 CrossRefGoogle Scholar
  21. 21.
    Suzuki T, Tsushima S, Hirai S (2011) Effects of Nafion® ionomer and carbon particles on structure formation in a proton-exchange membrane fuel cell catalyst layer fabricated by the decal-transfer method. Int J Hydrog Energy 36(19):12361–12369. doi: 10.1016/j.ijhydene.2011.06.090 CrossRefGoogle Scholar
  22. 22.
    Mauritz KA, Moore RB (2004) State of understanding of Nafion. Chem Rev 104(10):4535–4585. doi: 10.1021/Cr0207123 CrossRefGoogle Scholar
  23. 23.
    Unnikrishnan EK, Kumar SD, Maiti B (1997) Permeation of inorganic anions through Nafion ionomer membrane. J Membr Sci 137(1–2):133–137. doi: 10.1016/S0376-7388(97)00193-2 CrossRefGoogle Scholar
  24. 24.
    Pourcelly G, Lindheimer A, Pamboutzoglou G, Gavach C (1989) Conductivity of sorbed hydrohalogenic acid in nafion perfluorosulfonic membranes. J Electroanal Chem 259(1–2):113–125. doi: 10.1016/0022-0728(89)80042-7 CrossRefGoogle Scholar
  25. 25.
    Schmidt TJ, Paulus UA, Gasteiger HA, Behm RJ (2001) The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions. J Electroanal Chem 508(1–2):41–47. doi: 10.1016/S0022-0728(01)00499-5 CrossRefGoogle Scholar
  26. 26.
    Schwitzgebel G, Endres F (1995) The determination of the apparent diffusion-coefficient of hcl in nafion(R)-117 and polypyrrole plus nafion(R)-117 by simple potential measurements. J Electroanal Chem 386(1–2):11–16. doi: 10.1016/0022-0728(95)03797-K CrossRefGoogle Scholar
  27. 27.
    Kuwertz R, Kirstein C, Turek T, Kunz U (2016) Influence of acid pretreatment on ionic conductivity of Nafion® membranes. J Membr Sci 500:225–235. doi: 10.1016/j.memsci.2015.11.022 CrossRefGoogle Scholar
  28. 28.
    Kim YS, Wang F, Hickner M, McCartney S, Hong YT, Harrison W, Zawodzinski TA, McGrath JE (2003) Effect of acidification treatment and morphological stability of sulfonated poly(arylene ether sulfone) copolymer proton-exchange membranes for fuel-cell use above 100 degrees C. J Polym Sci Pol Phys 41(22):2816–2828. doi: 10.1002/Polb.10496 CrossRefGoogle Scholar
  29. 29.
    Xie JA, Xu F, Wood DL, More KL, Zawodzinski TA, Smith WH (2010) Influence of ionomer content on the structure and performance of PEFC membrane electrode assemblies. Electrochim Acta 55(24):7404–7412. doi: 10.1016/j.electacta.2010.06.067 CrossRefGoogle Scholar
  30. 30.
    Lai CM, Lin JC, Ting FP, Chyou SD, Hsueh KL (2008) Contribution of Nafion loading to the activity of catalysts and the performance of PEMFC. Int J Hydrogen Energy 33(15):4132–4137. doi: 10.1016/j.ijhydene.2008.05.074 CrossRefGoogle Scholar
  31. 31.
    Parthasarathy A, Martin CR, Srinivasan S (1991) Investigations of the O2 reduction reaction at the platinum nafion interface using a solid-state electrochemical-cell. J Electrochem Soc 138(4):916–921. doi: 10.1149/1.2085747 CrossRefGoogle Scholar
  32. 32.
    Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR (1992) Temperature dependence of the electrode kinetics of oxygen reduction at the platinum/Nafion® interface—a microelectrode investigation. J Electrochem Soc 139(9):2530–2537. doi: 10.1149/1.2221258 CrossRefGoogle Scholar
  33. 33.
    Qi ZG, Kaufman A (2002) Improvement of water management by a microporous sublayer for PEM fuel cells. J Power Sources 109(1):38–46CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Rafael Kuwertz
    • 1
    Email author
  • Isai Gonzalez Martinez
    • 2
  • Tanja Vidaković-Koch
    • 3
  • Kai Sundmacher
    • 2
    • 3
  • Thomas Turek
    • 1
  • Ulrich Kunz
    • 1
  1. 1.Institute of Chemical and Electrochemical Process EngineeringClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.Process Systems EngineeringOtto-von-Guericke UniversityMagdeburgGermany
  3. 3.Max-Planck Institute for Dynamics of Complex Technical SystemsMagdeburgGermany

Personalised recommendations