Journal of Applied Electrochemistry

, Volume 46, Issue 2, pp 169–181 | Cite as

Cell performance distribution in a low-temperature proton exchange membrane fuel cell stack during propene contamination

  • Jean St-PierreEmail author
  • Maheboob B. V. Virji
Research Article
Part of the following topical collections:
  1. Fuel cells


A 36-cell proton exchange membrane fuel cell (PEMFC) stack was contaminated with 50 ppm propene in air. Propene contamination amplified the uneven cell performance distribution along the stack length. End cells showed a larger performance change due to contamination than contiguous cells owing to a lower temperature and a larger effect of contamination at lower temperatures. The performance change of the inner cells linearly varied from cell 2 to cell 35 and was attributed to several causes including the uneven sub-saturated air flow distribution and the propene oxidation reaction involving a water molecule. The inner cells performance distribution was also credited to the uneven coolant flow distribution and a large effect of temperature on contamination. Higher cathode potentials acted as a cleaning method that minimized the contamination effect by promoting propene oxidation and led to weakly adsorbing CO2. As a consequence, higher cathode potentials also resulted in smoothing the uneven inner cells performance distribution.


Proton exchange membrane fuel cell Fuel cell stack Voltage distribution Air stream contaminant 

List of symbols


End plate heat transfer surface (m2)


Cell sides heat transfer surface (m2)


Stack inner cells performance linear regression parameter (mV cell−1)


Coolant heat capacity (J kg−1 K−1)


Anode capacitance (F)


Cathode constant phase element


Summation index


Cell current (A)


\(\sqrt { - 1}\)


Heat transfer coefficient (W K−1 m−2)


Coolant flux (kg s−1)


Cell number or number of cells


Heat produced (W)


Cathode constant phase element coefficient (\({\text{s}}^{{\alpha_{\text{CPE}} }}\) Ω−1)


Natural convection heat loss through the end plate (W)


Inner cell heat loss (W)


Natural convection heat loss through the cell sides (W)

Q1 or n

End cells heat loss (W)


Hydrogen oxidation charge transfer resistance (Ω)


Oxygen reduction charge transfer resistance (Ω) or cell flow field channels hydraulic resistance (Pa s m−3)


Cell n flow field channels hydraulic resistance (Pa s m−3)


Cell manifolds hydraulic resistance (Pa s m−3)


Cell n manifolds hydraulic resistance (Pa s m−3)


Cell n total hydraulic resistance (Pa s m−3)


Membrane resistance (Ω)


Membrane resistance during the pre-contamination phase (Ω)


Membrane resistance during the contamination phase (Ω)


Cathode generalized finite length Warburg element resistance (Ω)


Ambient temperature (K)


Cell temperature (K)


Inlet coolant temperature (K)


Outlet coolant temperature (K)


End plate surface temperature (K)


Cathode generalized finite length Warburg element time constant (s)


Cell voltage during the pre-contamination phase used as baseline value (V)


Cell voltage during the contamination phase (V)


Cell voltage during the recovery phase (V)


Stack voltage (V)


Thermo-neutral cell voltage (V)


Cathode generalized finite length Warburg element


Cathode constant phase element impedance (Ω)


Cathode generalized finite length Warburg element impedance (Ω)


Cathode constant phase element exponent


Cathode generalized finite length Warburg element exponent


Coolant temperature rise between stack inlet and outlet (K)


Voltage difference between an end cell and the stack inner cells linear regression (mV)


Angular frequency (rad s−1)



The authors are grateful to the United States Office of Naval Research (award N00014-12-1-0496) and to the Hawaiian Electric Company for their ongoing support to the operations of the Hawaii Sustainable Energy Research Facility.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10800_2015_896_MOESM1_ESM.doc (80 kb)
Supplementary material 1 (DOC 80 kb)


  1. 1.
    Curtin S, Gangi J (2014) 2013 fuel cell technologies market report. United States Department of Energy, Energy Efficiency and Renewable EnergyGoogle Scholar
  2. 2.
    St-Pierre J (2009) Air impurities. In: Büchi FN, Inaba M, Schmidt TJ (eds) Polymer electrolyte fuel cell durability. Springer, New York, pp 289–321CrossRefGoogle Scholar
  3. 3.
    Kennedy DM, Cahela DR, Zhu WH, Westrom KC, Nelms RM, Tatarchuk BJ (2007) Fuel cell cathode air filters: methodologies for design and optimization. J Power Sour 168:391–399. doi: 10.1016/j.jpowsour.2007.03.020 CrossRefGoogle Scholar
  4. 4.
    St-Pierre J, Angelo M, Bethune K, Ge J, Higgins S, Reshetenko T, Virji M, Zhai Y (2014) PEMFC contamination—fundamentals and outlook. Electrochem Soc Trans 61(23):1–14. doi: 10.1149/06123.0001ecst Google Scholar
  5. 5.
    St-Pierre J (2009) Overview performance and operational conditions. In: Garche J, Dyer C, Moseley P, Ogumi Z, Rand D, Scrosati B (eds) Encyclopedia of electrochemical power sources, vol 2. Elsevier, Amsterdam, pp 901–911CrossRefGoogle Scholar
  6. 6.
    Chang PAC, St-Pierre J, Stumper J, Wetton B (2006) Flow distribution in proton exchange membrane fuel cell stacks. J Power Sour 162:340–355. doi: 10.1016/j.jpowsour.2006.06.081 CrossRefGoogle Scholar
  7. 7.
    Promislow K, Wetton B (2005) A simple, mathematical model of thermal coupling in fuel cell stacks. J Power Sour 150:129–135. doi: 10.1016/j.jpowsour.2005.02.032 CrossRefGoogle Scholar
  8. 8.
    Chang P, Kim G-S, Promislow K, Wetton B (2007) Reduced dimensional computational models of polymer electrolyte membrane fuel cell stacks. J Comput Phys 223:797–821. doi: 10.1016/ CrossRefGoogle Scholar
  9. 9.
    Pei H, Liu Z, Zhang H, Yu Y, Tu Z, Wan Z, Liu W (2013) In situ measurement of temperature distribution in proton exchange membrane fuel cell I a hydrogen-air stack. J Power Sources 227:72–79. doi: 10.1016/j.jpowsour.2012.11.027 CrossRefGoogle Scholar
  10. 10.
    St-Pierre J, Zhai Y, Angelo M (2012) Quantitative ranking criteria for PEMFC contaminants. Int J Hydrog Energy 37:6784–6789. doi: 10.1016/j.ijhydene.2012.01.029 CrossRefGoogle Scholar
  11. 11.
    Reshetenko TV, Bethune K, Rocheleau R (2012) Spatial proton exchange membrane fuel cell performance under carbon monoxide poisoning at a low concentration using a segmented cell system. J Power Sour 218:412–423. doi: 10.1016/j.jpowsour.2012.07.015 CrossRefGoogle Scholar
  12. 12.
    Büchi FN (2009) Heterogeneous cell ageing in polymer electrolyte fuel cell stacks. In: Büchi FN, Inaba M, Schmidt TJ (eds) Polymer electrolyte fuel cell durability. Springer, New York, pp 431–439CrossRefGoogle Scholar
  13. 13.
    Jung JH, Kim SH, Hur SH, Joo SH, Choi WM, Kim J (2013) Polymer electrolyte membrane fuel cell performance degradation by coolant leakage and recovery. J Power Sour 226:320–328. doi: 10.1016/j.jpowsour2012.10.090 CrossRefGoogle Scholar
  14. 14.
    St-Pierre J, Zhai Y, Angelo MS (2014) Effect of selected airborne contaminants on PEMFC performance. J Electrochem Soc 161:F280–F290. doi: 10.1149/2.057403jes CrossRefGoogle Scholar
  15. 15.
    St-Pierre J, Ge J, Zhai Y, Reshetenko TV, Angelo M (2013) PEMFC cathode contamination mechanisms for several VOCs—acetonitrile, acetylene, bromomethane, iso-propanol, methyl methacrylate, naphthalene and propene. Electrochem Soc Trans 58(1):519–528. doi: 10.1149/05801.0519ecst Google Scholar
  16. 16.
    St-Pierre J, Angelo MS, Zhai Y (2011) Focusing research by developing performance related selection criteria for PEMFC contaminants. Electrochem Soc Trans 41(1):279–286. doi: 10.1149/1.3635561 Google Scholar
  17. 17.
    Zhai Y, St-Pierre J, Angelo M (2012) The impact of operating conditions on the performance effect of selected airborne PEMFC contaminants. Electrochem Soc Trans 50(2):635–647. doi: 10.1149/05002.0635ecst Google Scholar
  18. 18.
    Ge J, St-Pierre J, Zhai Y (2014) PEMFC cathode catalyst contamination evaluation with a RRDE—propene and naphthalene. Electrochim Acta 138:437–446. doi: 10.1016/j.electacta.2014.06.147 CrossRefGoogle Scholar
  19. 19.
    Osenar P, Vitella T, Lauder N, Avis S, Ferreira D, Rezac R (2011) Insert-molded, externally-manifolded, sealed membrane based electrochemical cell stacks. United States Patent 7,914,947Google Scholar
  20. 20.
    Randolf G, Moore RM (2005) Test system design for hardware-in-loop evaluation of PEM fuel cells and auxiliaries. J Power Sour 158:392–396. doi: 10.1016/j.jpowsour.2005.09.058 CrossRefGoogle Scholar
  21. 21.
    Moore RM, Hauer KH, Randolf G, Virji M (2006) Fuel cell hardware-in-loop. J Power Sour 162:302–308. doi: 10.1016/j.jpowsour.2006.06.066 CrossRefGoogle Scholar
  22. 22.
    St-Pierre J, Wetton B, Zhai Y, Ge J (2014) Liquid water scavenging of PEMFC contaminants. J Electrochem Soc 161:E3357–E3364. doi: 10.1149/2.0291409jes CrossRefGoogle Scholar
  23. 23.
    Costamagna P, Arato E, Achenbach E, Reus U (1994) Fluid dynamic study of fuel-cell devices—simulation and experimental validation. J Power Sour 52:243–249. doi: 10.1016/0378-7753(94)02014-0 CrossRefGoogle Scholar
  24. 24.
    Na Y, Suh J, Song I, Choi K-H, Choi H, Kim KB, Park J-Y (2011) Stable operation of air-blowing direct methanol fuel cell stacks through uniform oxidant supply by varying fluid flow fixtures and developing the flow sensor. Int J Hydrog Energy 36:9205–9215. doi: 10.1016/j.ijhydene.2011.04.183 CrossRefGoogle Scholar
  25. 25.
    Wasterlain S, Candusso D, Harel F, Hissel D, François X (2011) Development of new test instruments and protocols for the diagnostic of fuel cell stacks. J Power Sour 196:5325–5333. doi: 10.1016/j.jpowsour.2010.08.029 CrossRefGoogle Scholar
  26. 26.
    Zhai Y, Bethune K, Bender G, Rocheleau R (2012) Analysis of the SO2 contamination effect on the oxygen reduction reaction in PEMFCs by electrochemical impedance spectroscopy. J Electrochem Soc 159:B524–B530. doi: 10.1149/2.067205jes CrossRefGoogle Scholar
  27. 27.
    Cimenti M, Tam M, Stumper J (2009) High frequency artifacts in electrochemical impedance spectroscopy measurements on PEM fuel cells. Electrochem Solid-State Lett 12:B131–B134. doi: 10.1149/1.3162829 CrossRefGoogle Scholar
  28. 28.
    Seland F, Tunold R, Harrington DA (2006) Impedance study of methanol oxidation on platinum electrodes. Electrochim Acta 51:3827–3840. doi: 10.1016/j.electacta.2005.10.050 CrossRefGoogle Scholar
  29. 29.
    Córdoba-Torres P, Keddam M, Nogueira RP (2009) On the intrinsic electrochemical nature of the inductance in EIS—a Monte Carlo simulation of the two-consecutive steps mechanism: the rough 3D case and the surface relaxation effect. Electrochim Acta 54:6779–6787. doi: 10.1016/j.electacta.2009.06.084 CrossRefGoogle Scholar
  30. 30.
    Ghosh S, Raj CR (2010) Facile in situ synthesis of multiwall carbon nanotube supported flowerlike Pt nanostructures: an efficient electrocatalyst for fuel cell application. J Phys Chem C 114:10843–10849. doi: 10.1021/jp100551e CrossRefGoogle Scholar
  31. 31.
    O’Rourke J, Arcak M, Ramani M (2008) Estimating air flow rates in a fuel cell system using electrochemical impedance. In: ASME 2008 dynamic systems and control conference, paper DSCC2008-2172. ASME, New York, pp 497–503Google Scholar
  32. 32.
    Strano MS, Foley HC (2001) Synthesis and characterization of catalytic nanoporous carbon membranes. AIChE J 47:66–78. doi: 10.1002/aic.690470110 CrossRefGoogle Scholar
  33. 33.
    Cruz FJAL, Esteves IAAC, Mota JPB (2010) Adsorption of light alkanes and alkenes onto single-walled carbon nanotube bundles: Langmuirian analysis and molecular simulations. Colloids Surf A 357:43–52. doi: 10.1016/j.colsurfa.2009.09.002 CrossRefGoogle Scholar
  34. 34.
    Ye P, Fang Z, Su B, Xing H, Yang Y, Su Y, Ren Q (2010) Adsorption of propylene and ethylene on 15 activated carbons. J Chem Eng Data 55:5669–5672. doi: 10.1021/je100601n CrossRefGoogle Scholar
  35. 35.
    Zaera F, Chrysostomou D (2000) Propylene on Pt(111) I. Characterization of surface species by infra-red spectroscopy. Surf Sci 457:71–88. doi: 10.1016/S0039-6028(00)00336-8 CrossRefGoogle Scholar
  36. 36.
    Janin E, Ringler S, Weissenrieder J, Åkermark T, Karlsson UO, Göthelid M, Nordlund D, Ogasawara H (2001) Adsorption and bonding of propene and 2-butenal on Pt(111). Surf Sci 482–485:83–89. doi: 10.1016/S0039-6028(00)00999-7 CrossRefGoogle Scholar
  37. 37.
    Valcárcel A, Ricart JM, Clotet A, Markovits A, Minot C, Illas F (2002) Theoretical study of the structure of propene adsorbed on Pt(111). Surf Sci 519:250–258. doi: 10.1016/S0039-6028(02)02220-3 CrossRefGoogle Scholar
  38. 38.
    Perger T, Kovács T, Turányi T, Treviño C (2005) Determination of the adsorption and desorption parameters for ethene and propene from measurements of the heterogeneous ignition temperature. Combust Flame 142:107–116. doi: 10.1016/j.combustflame.2005.03.001 CrossRefGoogle Scholar
  39. 39.
    Nykänen L, Honkala K (2011) Density functional theory study on propane and propene adsorption on Pt(111) and PtSn alloy surfaces. J Phys Chem C 115:9578–9586. doi: 10.1021/jp1121799 CrossRefGoogle Scholar
  40. 40.
    Garsany Y, Baturina OA, Swider-Lyons KE (2007) Impact of sulfur dioxide on the oxygen reduction reaction at Pt/Vulcan carbon electrocatalysts. J Electrochem Soc 154:B670–B675. doi: 10.1149/1.2736648 CrossRefGoogle Scholar
  41. 41.
    Elezović NR, Gajić-Krstajić L, Radmilović V, Vračar L, Krstajić NV (2009) Effect of chemisorbed carbon monoxide on Pt/C electrode on the mechanism of the hydrogen oxidation reaction. Electrochim Acta 54:1375–1382. doi: 10.1016/j.electacta.2008.08.067 CrossRefGoogle Scholar
  42. 42.
    Stickney JL, Soriaga MP, Hubbard AT, Anderson SE (1981) A survey of factors influencing the stability of organic functional-groups attached to platinum-electrodes. J Electroanal Chem 125:73–88. doi: 10.1016/S0022-0728(81)80325-7 CrossRefGoogle Scholar
  43. 43.
    Bełtowska-Brzezinska M, Łuczak T, Baltruschat H, Müller U (2003) Propene oxidation and hydrogenation on a porous platinum electrode in acidic solution. J Phys Chem B 107:4793–4800. doi: 10.1021/jp021726f CrossRefGoogle Scholar
  44. 44.
    Yang M-L, Zhu Y-A, Fan C, Sui Z-J, Chen D, Zhou X-G (2010) Density functional study of the chemisorption of C-1, C-2 and C-3 intermediates in propane dissociation on Pt(111). J Mol Catal A 321:42–49. doi: 10.1016/j.molcata.2010.01.017 CrossRefGoogle Scholar
  45. 45.
    Reiser CA, Resnick G (2004) End-cell thermal distancing for fuel cell system. United States Patent 6,824,901Google Scholar
  46. 46.
    Houlberg SE (2007) Fuel cell stack with passive end cell heater. United States Patent 7,160,640Google Scholar
  47. 47.
    Arthur DA, Alp AB (2010) Fuel cell stack end cell control methodology. United States Patent 7,718,291Google Scholar
  48. 48.
    Alp AB, Arthur DA (2011) Fuel cell reliability improvement by using stack end plate temperature sensors. United States Patent 7,862,949Google Scholar
  49. 49.
    Parthasarathy A, Srinivasan S, Appleby AJ, Martin CR (1992) Temperature-dependence of the electrode-kinetics of oxygen reduction at the platinum Nafion® interface—a microelectrode investigation. J Electrochem Soc 139:2530–2537. doi: 10.1149/1.2221258 CrossRefGoogle Scholar
  50. 50.
    Thompson EL, Jorne J, Gasteiger HA (2007) Oxygen reduction reaction kinetics in subfreezing PEM fuel cells. J Electrochem Soc 154:B783–B792. doi: 10.1149/1.2742305 CrossRefGoogle Scholar
  51. 51.
    Abdullah AM, Saleh MM, Awad MI, Okajima T, Kitamura F, Ohsaka T (2010) Temperature effect on the recovery of SO2-poisoned GC/nano-Pt electrode towards oxygen reduction. J Solid State Electrochem 14:1727–1734. doi: 10.1007/s10008-010-1023-y CrossRefGoogle Scholar
  52. 52.
    Sethuraman VA, Weidner JW (2010) Analysis of sulfur poisoning on a PEM fuel cell electrode. Electrochim Acta 55:5683–5694. doi: 10.1016/j.electacta.2010.05.004 CrossRefGoogle Scholar
  53. 53.
    Sethuraman VA, Khan S, Jur JS, Haug AT, Weidner JW (2009) Measuring oxygen, carbon monoxide and hydrogen sulfide diffusion coefficient and solubility in Nafion membranes. Electrochim Acta 54:6850–6860. doi: 10.1016/j.electacta.2009.06.068 CrossRefGoogle Scholar
  54. 54.
    Fouquet N, Doulet C, Nouillant C, Dauphin-Tanguy G, Ould-Bouamama B (2006) Model based PEM fuel cell state-of-health monitoring via ac impedance measurements. J Power Sour 159:905–913. doi: 10.1016/j.jpowsour.2005.11.035 CrossRefGoogle Scholar
  55. 55.
    Pan Y, Zhang JM, Guan WM, Zhang KH, Chen S (2011) Adsorption site preference of CO2 on the Pt(100) surface by ab initio calculations. J Phys Chem Solids 72:1–4. doi: 10.1016/j.jpcs.2010.09.017 CrossRefGoogle Scholar
  56. 56.
    St-Pierre J, Wilkinson DP, Knights S, Bos ML (2000) Relationships between water management, contamination and lifetime degradation in PEFC. J New Mater Electrochem Syst 3:99–106Google Scholar
  57. 57.
    Urdampilleta IG, Uribe FA, Rockward T, Brosha EL, Pivovar B, Garzon FH (2007) PEMFC poisoning with H2S: Dependence on operating conditions. Electrochem Soc Trans 11(1):831–842. doi: 10.1149/1.2780996 Google Scholar
  58. 58.
    Marécot P, Fakche A, Kellali B, Mabilon G, Prigent M, Barbier J (1994) Propane and propene oxidation over platinum and palladium on alumina—effects of chloride and water. Appl Catal B 3:283–294. doi: 10.1016/0926-3373(94)00003-4 CrossRefGoogle Scholar
  59. 59.
    González-Velasco JR, Botas JA, González-Marcos JA, Gutiérrez-Ortiz MA (1997) Influence of water and hydrocarbon processed in feedstream on the three-way behaviour of platinum-alumina catalysts. Appl Catal B 12:61–79. doi: 10.1016/S0926-3373(96)00058-6 CrossRefGoogle Scholar
  60. 60.
    McGarry M, Grega L (2005) Effects of inlet mass flow distribution and magnitude on reactant distribution for PEM fuel cells. J Fuel Cell Sci Technol 3:45–50. doi: 10.1115/1.2134736 CrossRefGoogle Scholar
  61. 61.
    Avila MS, Vignatti CI, Apesteguía CR, Garetto TF (2014) Effect of support on the deep oxidation of propane and propylene on Pt-based catalysts. Chem Eng J 241:52–59. doi: 10.1016/j.cej.2013.12.006 CrossRefGoogle Scholar
  62. 62.
    Benard S, Ousmane M, Retailleau L, Boreave A, Vernoux P, Giroir-Fendler A (2009) Catalytic removal of propene and toluene in air over noble metal catalyst. Can J Civil Eng 36:1935–1945. doi: 10.1139/L09-135 CrossRefGoogle Scholar
  63. 63.
    Benard S, Baylet A, Vernoux P, Valverde JL, Giroir-Fendler A (2013) Kinetics of the propene oxidation over a Pt/alumina catalyst. Catal Commun 36:63–66. doi: 10.1016/j.catcom.2013.03.001 CrossRefGoogle Scholar
  64. 64.
    Serra MCC, da Fonseca MMR, Calado JCG, Palavra AMF (1998) Solubility of propene in water and in a mineral medium for the cultivation of a Xanthobacter strain. J Solut Chem 27:455–461. doi: 10.1023/A:1022604705859 CrossRefGoogle Scholar
  65. 65.
    Mulder G, De Ridder F, Coenen P, Weyen D, Martens A (2008) Evaluation of an on-site cell voltage monitor for fuel cell systems. Int J Hydrogen Energy 33:5728–5737. doi: 10.1016/j.ijhydene.2008.07.017 CrossRefGoogle Scholar
  66. 66.
    Brunner D, Prasad AK, Advani SG, Peticolas BW (2010) A robust cell voltage monitoring system for analysis and diagnosis of fuel cell or battery systems. J Power Sour 195:8006–8012. doi: 10.1016/j.jpowsour.2010.06.054 CrossRefGoogle Scholar
  67. 67.
    Knights SD, Colbow KM, St-Pierre J, Wilkinson DP (2004) Aging mechanisms and lifetime, PEFC and DMFC. J Power Sour 127:127–134. doi: 10.1016/j.jpowsour.2003.09.033 CrossRefGoogle Scholar
  68. 68.
    Zhai Y, Bender G, Bethune K, Rocheleau R (2014) Influence of cell temperature on sulfur dioxide contamination in proton exchange membrane fuel cells. J Power Sour 247:40–48. doi: 10.1016/j.jpowsour.2013.08.054 CrossRefGoogle Scholar
  69. 69.
    Ramaker DE, Gatewood D, Korovina A, Garsany Y, Swider-Lyons KE (2010) Resolving sulfur oxidation and removal from Pt and Pt3Co electrocatalysts using in situ x-ray absorption spectroscopy. J Phys Chem C 114:11886–11897. doi: 10.1021/jp101977g CrossRefGoogle Scholar
  70. 70.
    St-Pierre J, Jia N, Rahmani R (2008) PEMFC contamination model: competitive adsorption demonstrated with NO2. J Electrochem Soc 155:B315–B320. doi: 10.1149/1.2833301 CrossRefGoogle Scholar
  71. 71.
    Lee SJ, Mukerjee S, Ticianelli EA, McBreen J (1999) Electrocatalysis of CO tolerance in hydrogen oxidation reaction in PEM fuel cells. Electrochim Acta 44:3283–3293. doi: 10.1016/S0013-4686(99)00052-3 CrossRefGoogle Scholar
  72. 72.
    Marković NM, Ross PN Jr (2002) Surface science studies of model fuel cell electrcatalysts. Surf Sci Rep 45:117–229. doi: 10.1016/S0167-5729(01)00022-X CrossRefGoogle Scholar
  73. 73.
    O’Brien JA, Hinkley JT, Donne SW, Lindquist S-E (2010) The electrochemical oxidation of aqueous sulfur dioxide: a critical review of work with respect to the hybrid sulfur cycle. Electrochim Acta 55:573–591. doi: 10.1016/j.electacta.2009.09.067 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Hawaii Natural Energy InstituteUniversity of Hawaii – ManoaHonoluluUSA

Personalised recommendations