Advertisement

Journal of Applied Electrochemistry

, Volume 45, Issue 8, pp 899–912 | Cite as

Non-isothermal model for an industrial chlor-alkali cell with oxygen-depolarized cathode

  • Naresh ChavanEmail author
  • Stefan Pinnow
  • Gregor D. Polcyn
  • Thomas Turek
Research Article
Part of the following topical collections:
  1. Electrochemical Processes

Abstract

A mathematical model for a chlor-alkali electrolysis cell with oxygen-depolarized cathode (ODC) was developed. With this model, distributions of temperature, concentration, current density, and overpotential as a function of height can be calculated. At an industrially relevant current density of \(4\,{\mathrm{kAm}}^{-2}\), neither current density nor overpotentials exhibit strong variations along the cell height. Main reason for this behavior is the uniformity of temperature distributions in the solid compartments of the cell (anode, membrane, ODC) which can be explained by efficient heat transfer between the electrodes and the electrolyte streams. This is especially true for the caustic solution, through which most of the irreversible heat released in the cell is removed. However, the temperature of the oxygen stream increases only slowly until at the top of the electrolyzer, gas temperatures around 78 °C are achieved. Due to the initially low temperatures and the low water content of the inlet oxygen stream, the gas phase takes up considerable net amounts of water vapor. Nevertheless, the oxygen partial pressure at the electrochemically active regions of the ODC remains high allowing for efficient operation of the cathode.

Keywords

Chlor-alkali electrolysis Oxygen-depolarized cathode  Modeling Heat balance 

Notes

Acknowledgments

We would like to thank the German Ministry of Education and Research (BMBF) for funding this work under the klimazwei program. The authors also greatly acknowledge Andreas Bulan and his team at Bayer MaterialScience AG (BMS) for fruitful discussions, which improved the overall quality of this work. We also would like to thank BMS for the caustic ion conductivity measurements.

References

  1. 1.
    Schmittinger P, Florkiewicz T, Curlin LC, Lüke B, Scannell R, Navin T, Zelfel E, Bartsch R (2000) Ullmann’s encyclopedia of industrial chemistry, chap. Chlorine. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 1–96. doi: 10.1002/14356007.a06_399.pub3
  2. 2.
    IHS Chemical, World Analysis—Chlor-Alkali. Tech Rep (2014)Google Scholar
  3. 3.
  4. 4.
    Moussallem I, Jörissen J, Kunz U, Pinnow S, Turek T (2008) J Appl Electrochem 38(9):1177. doi: 10.1007/s10800-008-9556-9 CrossRefGoogle Scholar
  5. 5.
    Faita G, Federico F (2011) Electrochemical cell with gas diffusion electrodes. http://www.google.com/patents/EP1446515B1?cl=en. EP Patent 1,446,515. Accessed 18 Mar 2015
  6. 6.
    Moussallem I, Pinnow S, Wagner N, Turek T (2012) Chem Eng Process 52:125. doi: 10.1016/j.cep.2011.11.003 CrossRefGoogle Scholar
  7. 7.
    Jörissen J, Turek T, Weber R (2011) Chem Unserer Zeit 45(3):172. doi: 10.1002/ciuz.201100545 CrossRefGoogle Scholar
  8. 8.
    Innovative processes reduce CO\(_2\) emissions : smart technologies. http://www.materialscience.bayer.com/en/Sustainability/Clean-Production/Processes.aspx. Accessed 21 Jan 2015
  9. 9.
  10. 10.
    Uhdenora and Befar to build new Chinese caustic soda plant. http://www.chemicals-technology.com/news/newsuhdenora-befar-to-build-new-caustic-soda-plant-in-china-4181453/. Accessed on 21.01.2015
  11. 11.
    UHDENORA receives first order for new energy-efficient electrolysis technology. http://www.uhdenora.com/details.asp?id_news=83. Accessed 21 Jan 2015
  12. 12.
    O’Brien TF, Bommaraju TV, Hine F (2005) Handbook of chlor-alkali technology, chap 10, vol IV. Springer, New York, pp 1013–1087. doi: 10.1007/0-306-48624-5-10 Google Scholar
  13. 13.
    Chandran RR, Chin DT (1986) Electrochim Acta 31(1):39. doi: 10.1016/0013-4686(86)80058-5 CrossRefGoogle Scholar
  14. 14.
    Šimek M, Roušar I (1988) J Appl Electrochem 18(1):96. doi: 10.1007/BF01016211 CrossRefGoogle Scholar
  15. 15.
    White RE, Jagush F, Burney H (1990) J Electrochem Soc 137(6):1846. doi: 10.1149/1.2086814 CrossRefGoogle Scholar
  16. 16.
    Byrne P, Bosander P, Parhammar O, Fontes E (2000) J Appl Electrochem 30(12):1361. doi: 10.1023/A:1026530830265 CrossRefGoogle Scholar
  17. 17.
    Wang XL, Koda S (1997) Denki Kagaku 65(12):1002Google Scholar
  18. 18.
    Wang XL, Koda S (1997) Denki Kagaku 65(12):1014Google Scholar
  19. 19.
    Pinnow S, Chavan N, Turek T (2011) J Appl Electrochem 41(9):1053. doi: 10.1007/s10800-011-0311-2 CrossRefGoogle Scholar
  20. 20.
    Pinnow S (2013) Modellierung von Sauerstoffverzehrkathoden für die Chloralkali-Elektrolyse. Ph.D. thesis, TU ClausthalGoogle Scholar
  21. 21.
    Sudoh M, Arai K, Izawa Y, Suzuki T, Uno M, Tanaka M, Hirao K, Nishiki Y (2011) Electrochim Acta 56(28):10575. doi: 10.1016/j.electacta.2011.06.013 CrossRefGoogle Scholar
  22. 22.
    Weber AZ, Newman J (2004) Chem Rev 104(10):4679. doi: 10.1021/cr020729l CrossRefGoogle Scholar
  23. 23.
    Nguyen TV, White RE (1993) J Electrochem Soc 140(8):2178. doi: 10.1149/1.2220792 CrossRefGoogle Scholar
  24. 24.
    Yi JS, Nguyen TV (1998) J Electrochem Soc 145(4):1149. doi: 10.1149/1.1838431 CrossRefGoogle Scholar
  25. 25.
    Pfennig A, Schabel W, Wolf H (2010) VDI heat atlas, VDI-buch. Springer, Berlin, pp 513–550. doi: 10.1007/978-3-540-77877-6-23 CrossRefGoogle Scholar
  26. 26.
    Kubasov V (1973) Electrokhimiya 9:1790Google Scholar
  27. 27.
    Vogt H (1978) Electrochim Acta 23(3):203. doi: 10.1016/0013-4686(78)85047-6 CrossRefGoogle Scholar
  28. 28.
    Vogt H, Balzer R (2005) Electrochim acta 50(10):2073. doi: 10.1016/j.electacta.2004.09.025 CrossRefGoogle Scholar
  29. 29.
    O’Brien TF, Bommaraju TV, Hine F (2005) Handbook of chlor-alkali technology. New York, Springer, vol. V, chap. appendix, pp. 1491–1582. http://www.springer.com/chemistry/electrochemistry/book/978-0-306-48623-4. Accessed 18 Mar 2015
  30. 30.
    Wagner W, Kretzschmar HJ, Span R, Krauss R (2010) VDI heat atlas, VDI-buch. Springer, Berlin, pp 153–300. doi: 10.1007/978-3-540-77877-6-11 CrossRefGoogle Scholar
  31. 31.
    de Bethune AJ, Licht TS, Swendeman N (1959) J Electrochem Soc 106(7):616. doi: 10.1149/1.2427448
  32. 32.
    Salvi GR, de Bethune AJ (1961) J Electrochem Soc 108(7):672. doi: 10.1149/1.2428187
  33. 33.
    Atkins P, De Paula J (2012) Elements of physical chemistry. Oxford University Press, Oxford. http://ukcatalogue.oup.com/product/9780199608119.do. Accessed 18 Mar 2015
  34. 34.
    Abu-Eishah S (2001) Int J Thermophys 22(6):1855. doi: 10.1023/A:1013155404019 CrossRefGoogle Scholar
  35. 35.
    Jörissen J, Frania P, Heyl A, Hoormann D, Polcyn G, Toepell G, Verfuß F, Hofmann P, Donst D, Funck F, Toros P, Woltering P (2013) System zur Messung der Membrananspannung in Elektrolysezellen. http://www.google.com/patents/DE102012009267A1?cl=en. DE Patent App. DE201,210,009,267. Accessed 18 Mar 2015
  36. 36.
    Olsson J, Jernqvist Å, Aly G (1997) Int J Thermophys 18(3):779. doi: 10.1007/BF02575133
  37. 37.
    Chatenet M, Aurousseau M, Durand R (2000) Ind Eng Chem Res 39(8):3083. doi: 10.1021/ie000044g CrossRefGoogle Scholar
  38. 38.
    Neubronner M, Bodmer T, Hübner C, Kempa PB, Tsotsas E, Eschner A, Kasparek G, Ochs F, Müller-Steinhagen H, Werner H, Spitzner M (2010) VDI heat atlas, VDI-buch. Springer, Berlin, pp 551–614. doi: 10.1007/978-3-540-77877-6-26 CrossRefGoogle Scholar
  39. 39.
    Bruggeman DAG (1935) Ann Phys 416(8):665. doi: 10.1002/andp.19354160802 CrossRefGoogle Scholar
  40. 40.
    Weber AZ, Balasubramanian S, Das PK (2012) In: Sundmacher K (ed) Fuel cell engineering, advances in chemical engineering, chap 2, vol 41. Academic Press, Burlington, pp 65–144. doi: 10.1016/B978-0-12-386874-9.00003-8
  41. 41.
    O’Brien TF, Bommaraju TV, Hine F (2005) Handbook of chlor-alkali technology, chap 5, vol II. Springer, New York, pp 387–442. doi: 10.1007/0-306-48624-5-5 Google Scholar
  42. 42.
    Tilak BV (1979) J Electrochem Soc 126(8):1343. doi: 10.1149/1.2129274 CrossRefGoogle Scholar
  43. 43.
    Gestermann F, Ottaviani A (2007) In: Moorhouse J (ed) Modern chlor-alkali technology, chap 4, vol 8. Blackwell Science Ltd, Oxford, pp 49–56. doi: 10.1002/9780470999479.ch4
  44. 44.
    Khandelwal M, Mench M (2006) J Power Sources 161(2):1106. doi: 10.1016/j.jpowsour.2006.06.092 CrossRefGoogle Scholar
  45. 45.
    Carpenter JH (1966) Limnol oceanogr 11(2):264. http://www.jstor.org/stable/2833432. Accessed 18 Mar 2015
  46. 46.
    O’Brien TF, Bommaraju TV, Hine F (2005) Handbook of chlor-alkali technology, chap 6, vol II. Springer, New York, pp 443–464. doi: 10.1007/0-306-48624-5-6 Google Scholar
  47. 47.
    Bulan A, Gestermann F, Pinter H (2005) Process for the electrolysis of an aqueous solution of alkali metal chloride. http://www.google.co.in/patents/US6890418. US Patent 6,890,418. Accessed 18 Mar 2015

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Institute of Chemical and Electrochemical Process EngineeringClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.ThyssenKrupp Industrial Solutions AGDortmundGermany
  3. 3.ThyssenKrupp Electrolysis GmbHDortmundGermany

Personalised recommendations