Journal of Applied Electrochemistry

, Volume 45, Issue 6, pp 623–633 | Cite as

Effect of ethylene glycol on electrochemical and morphological features of platinum electrodeposits from chloroplatinic acid

  • Weldegebriel Yohannes
  • S. V. Belenov
  • V. E. Guterman
  • L. M. Skibina
  • V. A. Volotchaev
  • N. V. Lyanguzov
Research Article
Part of the following topical collections:
  1. Electrodeposition


The aim of this work was to investigate the morphology, average size, and the electrochemical behavior of platinum nanoparticles electrodeposited from water and mixed water–ethylene glycol solutions of the electrolyte of H2PtCl6 and H2SO4 at a rotating disk electrode coated with Vulcan XC-72 carbon powder. Cyclic voltammetry and linear sweep voltammetry were used to determine the electrochemically active surface area (ESA) and oxygen reduction reaction (ORR) activity of the prepared Pt/C materials, respectively. XRD and scanning electron microscopy were used to study the influence of the electrodeposition methods applied on the morphology of platinum particles deposited in water and mixed water–ethylene glycol solutions. The average size of Pt crystallites was in the range of ca. 6–10 nm, and the average size of deposited Pt particles was in the range of ca. 30–150 nm. It was found that the presence of ethylene glycol in the electrolyte solution increased the overpotential of electrodeposition and it also strongly affected the morphology of Pt deposits when constant current electrodeposition was employed. Moreover, it was shown that pulse current electrodeposition is a more effective method compared to constant current electrodeposition method for the preparation of the Pt/Vulcan electrode with high ESA of Pt and enhanced catalytic activity toward ORR. The results obtained concerning the morphology and the spatial distribution of platinum particles electrodeposited on the surface of carbon support at different conditions demonstrate new possibilities to improve synthesis of Pt/C by electrodeposition methods.


Galvanostatic electrodeposition Platinum Vulcan XC-72 Electrocatalyst ORR 



This work was financially supported by the Grant of Southern Federal University: No 213.01-2014/005VG.


  1. 1.
    Dini JW (1993) Electrodeposition: the materials science of coatings and substrates. Noyes Publications, Park RidgeGoogle Scholar
  2. 2.
    Paoletti C, Cemmi A, Giorgi L, Giorgi R, Pilloni L, Serra E, Pasquali M (2008) Electro-deposition on carbon black and carbon nanotubes of Pt nanostructured catalysts for methanol oxidation. J Power Sources 183:84–91. doi: 10.1016/j.jpowsour.2008.04.083 CrossRefGoogle Scholar
  3. 3.
    Zhang C, Yu H, Li Y, Song W, Yi B, Shao Z (2012) Preparation of Pt catalysts decorated TiO2 nanotube arrays by redox replacement of Ni precursors for proton exchange membrane fuel cells. Electrochim Acta 80:1–6. doi: 10.1016/j.electacta.2012.05.162 CrossRefGoogle Scholar
  4. 4.
    Habibi B, Pournaghi-Azar MH, Razmi H, Abdolmohammad-Zadeh H (2008) Electrochemical preparation of a novel, effective and low cast catalytic surface for hydrogen evolution reaction. Int J Hydrog Energy 33:2668–2678. doi: 10.1016/j.ijhydene.2008.03.014 CrossRefGoogle Scholar
  5. 5.
    Dong L, Gari RRS, Li Z, Craig MM, Hou S (2010) Graphene-supported platinum and platinum–ruthenium nanoparticles with high electrocatalytic activity for methanol and ethanol oxidation. Carbon 48:781–787. doi: 10.1016/j.carbon.2009.10.027 CrossRefGoogle Scholar
  6. 6.
    Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145. doi: 10.1016/S0022-0728(00)00407-1 CrossRefGoogle Scholar
  7. 7.
    Shen PK, Tian Z (2004) Performance of highly dispersed Pt/C catalysts for low temperature fuel cells. Electrochim Acta 49:3107–3111. doi: 10.1016/j.electacta.2004.02.024 CrossRefGoogle Scholar
  8. 8.
    Li W, Liang C, Zhou W, Qiu J, Zhou Z, Sun G, Xin Q (2003) Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J Phys Chem 107:6292–6299. doi: 10.1021/jp022505c CrossRefGoogle Scholar
  9. 9.
    Liang Y, Zhang H, Yi B, Zhang Z, Tan Z (2005) Preparation and characterization of multi-walled carbon nanotubes supported Pt Ru catalysts for proton exchange membrane fuel cells. Carbon 43:3144–3152CrossRefGoogle Scholar
  10. 10.
    Ye F, Hu W, Zhang T, Yang J, Ding Y (2012) Enhanced electrocatalytic activity of Pt-nanostructures prepared by electrodeposition using poly(vinyl pyrrolidone) as a shape-control agent. Electrochim Acta 83:383–386CrossRefGoogle Scholar
  11. 11.
    Ho VTT, Nguyen NG, Pan C, Cheng J, Rick J, Su W, Lee J, Sheu H, Hwang B (2012) Advanced nanoelectrocatalyst for methanol oxidation and oxygen reduction reaction, fabricated as one-dimensional Pt nanowires on nanostructured robust Ti0.7Ru0.3O2 support. Nano Energy 1:687–695. doi: 10.1016/j.nanoen.2012.07.007 CrossRefGoogle Scholar
  12. 12.
    Frelink T, Visscher W, Van Veen JAR (1995) Particle size effect of carbon-supported platinum catalysts for the electrooxidation of methanol. J Electroanal Chem 382:65–72. doi: 10.1016/0022-0728(94)03648-M CrossRefGoogle Scholar
  13. 13.
    Gasteiger HA, Kocha SS, Bhaskar S, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, a reduction catalysts for PEMFCs. Appl Catal B Environ. doi: 10.1016/j.apcatb.2004.06.021 Google Scholar
  14. 14.
    Guo S, Wang E (2011) Noble metal nanomaterials controllable synthesis and application in fuel cells and analytical sensors. Nano Today 6:240–264. doi: 10.1016/j.nantod.2011.04.007 CrossRefGoogle Scholar
  15. 15.
    Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Catal B 88:1–24. doi: 10.1016/j.apcatb.2008.09.030 CrossRefGoogle Scholar
  16. 16.
    Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cells, vol 46. Johnson Matthey Public Limited Company, Hatton Garden, p 4Google Scholar
  17. 17.
    Shao Y, Liu J, Wang Y, Lin Y (2009) Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem 19:46–59. doi: 10.1039/b808370c CrossRefGoogle Scholar
  18. 18.
    Domнnguez-Domнnguez S, Arias-Pardilla J, Berenguer-Murcia Б, Morallyn E, Cazorla-Amorys D (2008) Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers. J Appl Electrochem 38:259–268. doi: 10.1007/s10800-007-9435-9 CrossRefGoogle Scholar
  19. 19.
    Feng JJ, Li AQ, Wang AJ, Lei Z, Chen JR (2011) Electrodeposition of monodispersed platinum nanoparticles on a glassy carbon electrode for sensing methanol. Microchim Acta 173:383–389. doi: 10.1007/s00604-011-0566-7 CrossRefGoogle Scholar
  20. 20.
    Tang H, Chen JH, Huang ZP, Wang DZ, Ren ZF, Nie LH, Kuang YF, Yao SZ (2004) High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon 42:191–197. doi: 10.1016/j.carbon.2003.10.023 CrossRefGoogle Scholar
  21. 21.
    Zhang L, Fang Z, Zhao GC, Wei XW (2008) Electrodeposited platinum nanoparticles on the multi-walled carbon nanotubes and its electrocatalytic for nitric oxide. Int J Electrochem Sci 3:746–754Google Scholar
  22. 22.
    Wei ZD, Chan SH, Li LL, Cai HF, Xia ZT, Sun CX (2005) Electrodepositing Pt on a Nafion-bonded carbon electrode as a catalyzed electrode for oxygen reduction reaction. Electrochim Acta 50:2279–2287. doi: 10.1016/j.electacta.2004.10.054 CrossRefGoogle Scholar
  23. 23.
    Santiago D, Rodrнguez-Calero GG, Rivera H, Tryk DA, Scibioh MA, Cabrera CR (2010) Platinum electrodeposition at high surface area carbon Vulcan XC-72 material using a rotating disk-slurry electrode technique. J Electrochem Soc 157:F189–F195. doi: 10.1149/1.3489948 CrossRefGoogle Scholar
  24. 24.
    Misoon O, Seok K (2012) Electrochemical properties of carbon-supported metal nanoparticles prepared by electroplating methods. Electroplating 166:1–28. doi: 10.5772/33682 Google Scholar
  25. 25.
    Zeng J, Lee JY, Zhou W (2006) Activities of Pt/C catalysts prepared by low temperature chemical reduction methods. Appl Catal A 308:99–104. doi: 10.1016/j.apcata.2006.04.019 CrossRefGoogle Scholar
  26. 26.
    Lin C, Khan MR, Lin SD (2006) The preparation of Pt nanoparticles by methanol and citrate. J Colloid Interface Sci 299:678–685. doi: 10.1016/j.jcis.2006.03.003 CrossRefGoogle Scholar
  27. 27.
    Kim H, Subramanian NP, Popov BN (2004) Preparation of PEM fuel cell electrodes using pulse electrodeposition. J Power Sources 138P:14–24. doi: 10.1016/j.jpowsour.2004.06.012 CrossRefGoogle Scholar
  28. 28.
    He Z, Chen J, Liu D, Zhou H, Kuang Y (2004) Electrodeposition of Pt–Ru nanoparticles on carbon nanotubes and their electrocatalytic properties for methanol electrooxidation. Diam Relat Mater 13:1764–1770. doi: 10.1016/j.diamond.2004.03.004 CrossRefGoogle Scholar
  29. 29.
    Natter H, Hempelmann R (2003) Tailor-made nanomaterials designed by electrochemical methods. Electrochim Acta 49(1):51–61. doi: 10.1016/j.electacta.2003.04.004 CrossRefGoogle Scholar
  30. 30.
    Guterman VE, Pakharev AY, Tabachkova NY (2013) Microstructure and size effects in Pt/C and Pt3Ni/C electrocatalysts synthesised in solutions based on binary organic solvents. Appl Catal A 453:113–120CrossRefGoogle Scholar
  31. 31.
    Leontyev IN, Belenov SV, Guterman VE, Haghi-Ashtiani P, Shaganov A, Dkhil B (2011) J Phys Chem C 115:5429–5434. doi: 10.1021/jp1109477 CrossRefGoogle Scholar
  32. 32.
    Zarkadas G, Stergiou A, Papanastasiou G (2005) Influence of citric acid on the silver electrodeposition from aqueous AgNO3 solutions. Electrochim Acta 50:5022–5031. doi: 10.1016/j.electacta.2005.02.081 CrossRefGoogle Scholar
  33. 33.
    Fukui R, Katayama Y, Miura T (2011) The effect of organic additives in electrodeposition of Co from an amide-type ionic liquid. Electrochim Acta 56:1190–1196. doi: 10.1016/j.electacta.2010.10.074 CrossRefGoogle Scholar
  34. 34.
    Sieben JM, Duarte MM, Mayer CE (2011) Influence of alcohol additives in the preparation of electrodeposited Pt–Ru catalysts catalyst on oxidized graphite cloths. J Alloy Compd 509:4002–4009CrossRefGoogle Scholar
  35. 35.
    Quinet M, Lallemand F, Ricq L, Hihn J-Y, Delobelle P, Arnould C, Mekhalif Z (2009) Influence of organic additives on the initial stages of copper electrodeposition on polycrystalline platinum. Electrochim Acta 54:1529–1536. doi: 10.1016/j.electacta.2008.09.052 CrossRefGoogle Scholar
  36. 36.
    Tzeng GS, Lin SH, Wang YY, Wan CC (1996) Effects of additives on the electrodeposition of Tin from an acidic Sn (II) bath. J Appl Electrochem 26:419–423. doi: 10.1007/BF00251327 Google Scholar
  37. 37.
    Carlos IA, Souza CAC, Pallone EMJA, Francisco RHP, Cardoso V, Lima-Neto BS (2000) Effect of tartrate on the morphological characteristics of the copper–tin electrodeposits from a noncyanide acid bath. J Appl Electrochem 30:987–994. doi: 10.1023/A:1004047110057 CrossRefGoogle Scholar
  38. 38.
    Kim JW, Lee JY, Park SM (2004) Effects of organic additives on zinc electrodeposition at iron electrodes studied by EQCM and in situ STM. Langmuir 20:459–466. doi: 10.1021/la0347556 CrossRefGoogle Scholar
  39. 39.
    Matsumoto T, Komatsu T, Nakano H, Arai K, Nagashima Y, Yoo E, Yamazaki T et al (2004) Efficient usage of highly dispersed Pt on carbon nanotubes for electrode catalysts of polymer electrolyte fuel cells. Catal Today 90:277–281. doi: 10.1016/j.cattod.2004.04.038 CrossRefGoogle Scholar
  40. 40.
    Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR (2004) Size-selected synthesis of Pt Ru nano-catalysts: reaction and size control mechanism. J Am Chem Soc 126:8028–8037. doi: 10.1021/ja0495819 CrossRefGoogle Scholar
  41. 41.
    Guterman VE, Belenov SV, Dymnikova OV, Lastovina TA, Konstantinova YB, Prutsakova NV (2009) Influence of water-organic solvent composition on composition and structure of Pt/C and PtXNi/C electrocatalysts in borohydride synthesis. Inorg Mater 45:498–505. doi: 10.1134/S1023193511080052 CrossRefGoogle Scholar
  42. 42.
    Leontyev IN, Guterman VE, Pakhomova EB, Timoshenko PE, Guterman AV, Zakharchenko IN, Petin GP, Dkhil B (2010) XRD and electrochemical investigation of particle size effects in platinum–cobalt cathode electrocatalysts for oxygen reduction. J Alloy Compd 500:241–246. doi: 10.1016/j.jallcom.2010.04.018 CrossRefGoogle Scholar
  43. 43.
    Tsai MC, Yeh TK, Tsai CH (2006) An improved electrodeposition technique for preparing platinum and platinum–ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation. Electrochem Commun 8:1445–1452. doi: 10.1016/j.elecom.2006.07.003 CrossRefGoogle Scholar
  44. 44.
    Bard AJ, Faulkner LR (1980) Electrochemical methods fundamentals and applications. Wiley, New York, p 339Google Scholar
  45. 45.
    Yohannes W, Belenov SV, Guterman VE, Skibina LM, Lyanguzov NV (2014) Study of effect of applied current and deposition time on electrochemically active surface area and microstructure of platinum nanomaterials. Proceedings of ICANM 2014: international conference & exhibition on advanced & nano materials, Calgary, pp 161–172Google Scholar
  46. 46.
    Chen X, Li N, Eckhard K, Stoica L, Xia W, Assmann J, Schuhmann W (2007) Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes. Electrochem Commun 9:1348–1354. doi: 10.1016/j.elecom.2007.01.034 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Weldegebriel Yohannes
    • 1
  • S. V. Belenov
    • 1
  • V. E. Guterman
    • 1
  • L. M. Skibina
    • 1
  • V. A. Volotchaev
    • 1
  • N. V. Lyanguzov
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations