Journal of Applied Electrochemistry

, Volume 45, Issue 1, pp 87–93 | Cite as

Electrodeposition of copper thin films from 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide

  • Tomin Liu
  • Rui Vilar
  • Sónia Eugénio
  • Joseph Grondin
  • Yann Danten
Research Article
Part of the following topical collections:
  1. Electrodeposition


Copper films are used as electrical contacts in printed circuit boards in view of their high electrical conductivity. The aim of the present work was to develop a method for the electrodeposition of high quality copper films from an ionic liquid-based electrolyte with low environmental and health impacts. The electrolyte investigated was copper(II) bis(trifluoromethylsulfonyl)imide (CuTFSI2) solutions in 1-methyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (EMIM-TFSI). The Cu(II) → Cu(I) reaction in this electrolyte was quasi-reversible, with an activation energy of 12 kJ mol−1. Dense nano-crystalline copper films with particle sizes of 20 nm were easily obtained from CuTFSI2 solutions in EMIM-TFSI. The morphology of the copper films was independent of the deposition potential and time, possibly due to stable complexes in solution arising from the use of the ionic liquid and metallic salt with the same anion.


Electrodeposition Ionic liquid Common ion Copper EMIM-TFSI 


  1. 1.
    Abbott AP, El Ttaib K, Frisch G, McKenzie KJ, Ryder KS (2009) Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Phys Chem Chem Phys 11(21):4269–4277. doi:10.1039/b817881j CrossRefGoogle Scholar
  2. 2.
    Gu CD, You YH, Wang XL, Tu JP (2012) Electrodeposition, structural, and corrosion properties of Cu films from a stable deep eutectics system with additive of ethylene diamine. Surf Coat Technol 209:117–123. doi:10.1016/j.surfcoat.2012.08.047 CrossRefGoogle Scholar
  3. 3.
    Endres F, Abbott A, MacFarlane D (2008) Electrodeposition from ionic liquids. Wiley VCH, WeinheimCrossRefGoogle Scholar
  4. 4.
    Drissi-Daoudi R, Irhzo A, Darchen A (2003) Electrochemical investigations of copper behaviour in different cupric complex solutions: voltammetric study. J Appl Electrochem 33(3–4):339–343. doi:10.1023/A:1024191404595 CrossRefGoogle Scholar
  5. 5.
    de Sa AI, Eugenio S, Quaresma S, Rangel CM, Vilar R (2011) Electrodeposition of gold thin films from 1-butyl-1-methylpyrrolidinium dicyanamide Au3+ solutions. Thin Solid Films 519(19):6278–6283. doi:10.1016/j.tsf.2011.03.135 CrossRefGoogle Scholar
  6. 6.
    Anastas P, Warner J (1998) Green chemistry: theory and practice. Oxford University Press, New YorkGoogle Scholar
  7. 7.
    Leong T, Sun I, Deng M, Wu C, Chen P (2008) Electrochemical study of copper in 1-ethyl-3-methylimidazolium dicyanamide room temperature ionic liquid. J Electrochem Soc 4:F55–F60CrossRefGoogle Scholar
  8. 8.
    Chen P, Sun I (1999) Electrochemical study of copper in a basic 1-ethyl-3-methylimidazolium tetrafluoroborate room temperature molten salt. Electrochem Acta 45:441–450CrossRefGoogle Scholar
  9. 9.
    Liu T, Vilar R, Eugénio S, Grondin J, Danten Y (2014) Electrodeposition of nanocrystalline copper thin films from 1-ethyl-3-methylimidazolium ethylsulphate ionic liquid. J Appl Electrochem 44(1):189–198. doi:10.1007/s10800-013-0630-6 CrossRefGoogle Scholar
  10. 10.
    Murase K, Nitta K, Hirato T, Awakura Y (2001) Electrochemical behaviour of copper in trimethyl-n-hexylammonium bis((trifluoromethyl)sulfonyl)amide, an ammonium imide-type room temperature molten salt. J Appl Electrochem 31(10):1089–1094. doi:10.1023/a:1012255601793 CrossRefGoogle Scholar
  11. 11.
    Chen P-Y, Chang Y-T (2012) Voltammetric study and electrodeposition of copper in 1-butyl-3-methylimidazolium salicylate ionic liquid. Electrochim Acta 75:339–346. doi:10.1016/j.electacta.2012.05.024 CrossRefGoogle Scholar
  12. 12.
    Abedin SZE, Saad AY, Farag HK, Borisenko N, Liu QX, Endres F (2007) Electrodeposition of Selenium, Indium and Copper in an air and water stable ionic liquids at variable temperatures. Electrochem Acta 52:2746–2754CrossRefGoogle Scholar
  13. 13.
    Leong T-I, Hsieh Y-T, Sun IW (2011) Electrochemistry of tin in the 1-ethyl-3-methylimidazolium dicyanamide room temperature ionic liquid. Electrochim Acta 56(11):3941–3946. doi:10.1016/j.electacta.2011.02.022 CrossRefGoogle Scholar
  14. 14.
    D’Urzo L, Schaltin S, Shkurankov A, Plank H, Kothleitner G, Gspan C, Binnemans K, Fransaer J (2012) Direct-on-barrier copper electroplating on ruthenium from the ionic liquid 1-ethyl-3-methylimidazolium dicyanamide. J Mater Sci Mater Electron 23(4):945–951. doi:10.1007/s10854-011-0525-4 CrossRefGoogle Scholar
  15. 15.
    Saravanan G, Mohan S (2013) Nucleation of copper on mild steel in copper chloride (CuCl2[middle dot]2H2O)-1-ethyl-3-methylimidazolium chloride [EMIM]Cl-ethylene glycol (EG) ionic liquid. New J Chem 37(8):2564–2567. doi:10.1039/C3NJ00245D CrossRefGoogle Scholar
  16. 16.
    Vainikka T, Lloyd D, Murtomaki L, Manzanares JA, Kontturi K (2013) Electrochemical study of copper chloride complexes in the RTIL 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. Electrochim Acta 87:739–748. doi:10.1016/j.electacta.2012.09.062 CrossRefGoogle Scholar
  17. 17.
    Matsumoto H (2005) Electrochemical windows of room-temperature ionic liquids. In: Electrochemical aspects of ionic liquids, John Wiley & Sons, Inc., Hoboken, pp 35–54. doi:10.1002/0471762512.ch4
  18. 18.
    Holbrey JD, Reichert WM, Swatloski RP, Broker GA, Pitner WR, Seddon KR, Rogers RD (2002) Efficient, halide free synthesis of new, low cost ionic liquids: 1,3-dialkylimidazolium salts containing methyl- and ethyl-sulfate anions. Green Chem 4(5):407–413. doi:10.1039/b204469b CrossRefGoogle Scholar
  19. 19.
    O’Bockris JOM, Reddy AKN (1970) Modern electrochemistry, vol 1. Plenum Press, New YorkCrossRefGoogle Scholar
  20. 20.
    Chen PY, Sun IW (1999) Electrochemical study of copper in a basic 1-ethyl-3-methylimidazolium tetrafluoroborate room temperature molten salt. Electrochim Acta 45(3):441–450. doi:10.1016/s0013-4686(99)00275-3 CrossRefGoogle Scholar
  21. 21.
    Leong TI, Sun IW, Deng MJ, Wu CM, Chen PY (2008) Electrochemical study of copper in the 1-ethyl-3-methylimidazolium dicyanamide room temperature ionic liquid. J Electrochem Soc 155(4):F55–F60. doi:10.1149/1.2840627 CrossRefGoogle Scholar
  22. 22.
    Larriba M, Navarro P, García J, Rodríguez F (2013) Liquid–Liquid extraction of toluene from heptane using [emim][DCA], [bmim][DCA], and [emim][TCM] ionic liquids. Ind Eng Chem Res 52(7):2714–2720. doi:10.1021/ie303357s CrossRefGoogle Scholar
  23. 23.
    Bonhôte P, Dias A-P, Papageorgiou N, Kalyanasundaram K, Grätzel M (1996) Hydrophobic, highly conductive ambient-temperature molten salts†. Inorg Chem 35(5):1168–1178. doi:10.1021/ic951325x CrossRefGoogle Scholar
  24. 24.
    McEwen AB, Ngo HL, LeCompte K, Goldman JL (1999) Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications. J Electrochem Soc 146(5):1687–1695. doi:10.1149/1.1391827 CrossRefGoogle Scholar
  25. 25.
    Froba AP, Kremer H, Leipertz A (2008) Density, refractive index, interfacial tension, and viscosity of ionic liquids EMIM EtSO4, EMIM NTf2, EMIM N(CN)(2), and OMA NTf2 in dependence on temperature at atmospheric pressure. J Phys Chem B 112(39):12420–12430. doi:10.1021/jp804319a CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Tomin Liu
    • 1
    • 2
  • Rui Vilar
    • 1
  • Sónia Eugénio
    • 1
  • Joseph Grondin
    • 2
  • Yann Danten
    • 2
  1. 1.Department of Chemical Engineering and ICEMS - Instituto de Ciências e Engenharia de Materiais e Superfícies, Instituto Superior TécnicoUniversidade Técnica de LisboaLisbonPortugal
  2. 2.Institut des Sciences Moléculaires - Université BordeauxTalence CedexFrance

Personalised recommendations