Journal of Applied Electrochemistry

, Volume 45, Issue 1, pp 11–19

Optimization of electrode characteristics for the Br2/H2 redox flow cell

  • Michael C. Tucker
  • Kyu Taek Cho
  • Adam Z. Weber
  • Guangyu Lin
  • Trung Van Nguyen
Research Article
Part of the following topical collections:
  1. Batteries

Abstract

The Br2/H2 redox flow cell shows promise as a high-power, low-cost energy storage device. The effect of various aspects of material selection, processing, and assembly of electrodes on the operation, performance, and efficiency of the system is determined. In particular, (+) electrode thickness, cell compression, hydrogen pressure, and (−) electrode architecture are investigated. Increasing hydrogen pressure and depositing the (−) catalyst layer on the membrane instead of on the carbon paper backing layers have a large positive impact on performance, enabling a limiting current density above 2 A cm−2 and a peak power density of 1.4 W cm−2. Maximum energy efficiency of 79 % is achieved. In addition, the root cause of limiting-current behavior in this system is elucidated, where it is found that Br reversibly adsorbs at the Pt (−) electrode for potentials exceeding a critical value, and the extent of Br coverage is potential-dependent. This phenomenon limits maximum cell current density and must be addressed in system modeling and design. These findings are expected to lower system cost and enable higher efficiency.

Keywords

Redox flow cell Bromine Flow battery Hydrogen bromine 

References

  1. 1.
    Cho KT, Albertus P, Battaglia V, Kojic A, Srinivasan V, Weber AZ (2013) Energy Technol 1:596–608CrossRefGoogle Scholar
  2. 2.
    Fischer J, Bingle J (1955) J Am Chem Soc 77:6511–6512CrossRefGoogle Scholar
  3. 3.
    Cho KT, Tucker MC, Ding M, Ridgway P, Battaglia VS, Srinivasan V, Weber AZ (2014) ChemPlusChem. doi:10.1002/cplu.201402043
  4. 4.
    Goor-Dar M, Travitsky N, Peled E (2012) J Power Sources 197:111–115CrossRefGoogle Scholar
  5. 5.
    Livshits V, Ulus A, Peled E (2006) Electrochem Commun 8:1358–1362CrossRefGoogle Scholar
  6. 6.
    Nguyen TV, Kreutzer H, Yarlagadda V, McFarland E, Singh N (2013) ECS Trans 53(7):75–81CrossRefGoogle Scholar
  7. 7.
    Zhang L, Shao ZG, Wang X, Yu H, Liu S, Yi B (2013) J Power Sources 242:15–22CrossRefGoogle Scholar
  8. 8.
    Cho KT, Ridgway P, Weber AZ, Haussener S, Battaglia V, Srinivasan V (2012) J Electrochem Soc 159(11):A1806–A1815CrossRefGoogle Scholar
  9. 9.
    Yarlagadda V, Nguyen TV (2013) J Electrochem Soc 160(6):F535–F547CrossRefGoogle Scholar
  10. 10.
    Kreutzer H, Yarlagadda V, Nguyen TV (2012) J Electrochem Soc 159(7):F331–F337CrossRefGoogle Scholar
  11. 11.
    Park JW, Wycisk R, Pintauro PN (2013) ECS Trans 50(2):1217–1231CrossRefGoogle Scholar
  12. 12.
    Yeo RS, Chin DT (1980) J Electrochem Soc 127(3):549–555CrossRefGoogle Scholar
  13. 13.
    Kusoglu A, Cho KT, Prato RA, Weber AZ (2013) Solid State Ionics 252:68–74CrossRefGoogle Scholar
  14. 14.
    Aaron D, Sun CN, Bright M, Papandrew AB, Mench MM, Zawodzinksi TA (2013) ECS Electrochem Lett 2(3):A1–A3CrossRefGoogle Scholar
  15. 15.
    Aaron DS, Liu Q, Tang Z, Grim GM, Papandrew AB, Turhan A, Zawodzinski TA, Mench MM (2012) J Power Sources 206:450–453CrossRefGoogle Scholar
  16. 16.
    Bai Y (2013) Membrane and performance study in polymer electrolyte membrane fuel cells and hydrogen bromine redox flow batteries. Dissertation, University of Tennessee, Knoxville Google Scholar
  17. 17.
    Kreutzer HM (2012) Characterization of the hydrogen-bromine flow battery for electrical energy storage. Dissertation, University of Kansas, LawrenceGoogle Scholar
  18. 18.
    Xu J, Scherson D (2013) Anal Chem 85:2795–2801CrossRefGoogle Scholar
  19. 19.
    Breiter MW (1963) Electrochim Acta 8:925–935CrossRefGoogle Scholar
  20. 20.
    Bagotzky VS, Vassilyev YB, Weber J, Pirtskhalava JN (1970) J Electroanal Chem 27:31–46CrossRefGoogle Scholar
  21. 21.
    Barna GG, Frank SN, Teherani TH, Weedon LD (1984) J Electrochem Soc 131:1973–1980CrossRefGoogle Scholar
  22. 22.
    Onishi LM, Prausnitz JM, Newman J (2007) Phys Chem B 111:10166–10173CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Michael C. Tucker
    • 1
  • Kyu Taek Cho
    • 4
  • Adam Z. Weber
    • 1
  • Guangyu Lin
    • 2
  • Trung Van Nguyen
    • 3
  1. 1.Environmental Energy Technologies DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  2. 2.TVN Systems, Inc.LawrenceUSA
  3. 3.Chemical and Petroleum EngineeringUniversity of KansasLawrenceUSA
  4. 4.Department of Mechanical EngineeringNorthern Illinois UniversityDeKalbUSA

Personalised recommendations