Journal of Applied Electrochemistry

, Volume 44, Issue 11, pp 1239–1251 | Cite as

Voltammetry of nanoparticle-coupled imine linkage-based receptors for sensing of Al(III) and Co(II) ions

  • Susheel K. Mittal
  • Rashmi Sharma
  • Manisha Sharma
  • Narinder Singh
  • Jasminder Singh
  • Navneet Kaur
  • Manmohan Chhibber
Research Article
Part of the following topical collections:
  1. Sensors and Electrochemical Methods

Abstract

Zinc oxide nanoparticle-coupled imine linkage-based receptors (T4, T5 and T6) were studied for their voltammetric characteristics. T4 and T5 having electron withdrawing and electron donating substituents at meta position of the imine linkage showed prominent cathodic (reduction of imine group) peaks at −0.930 and −1.850 V, respectively, while T6 (without any substituent) showed a cathodic peak at −1.220 V. Voltammograms of the receptors indicated that T4 and T5 responded quantitatively for aluminium ions, while T6 responded for cobalt ions. All the three receptors exhibited linear dynamic concentration ranges between 0.1 and 0.42 µM with regression coefficients ≥0.98. Calibration curves for the determination of aluminium and cobalt ions based on DPV data are reported and supported with potentiometric studies. Energy minimization studies using Gaussian 03W software also supported stability of the complexes. The proposed analytical method has been validated with complexometric method for metal detection in real-time samples.

Keywords

ZnO nanoparticle-coupled imine-based receptors Voltammetric sensor Aluminium/cobalt detection Theoretical study Substituent effects 

Notes

Acknowledgments

The authors are thankful to Thapar University, Patiala, for providing research facilities. Fruitful discussions with Dr. Narinder Singh of IIT Ropar, are gratefully acknowledged.

Supplementary material

10800_2014_746_MOESM1_ESM.doc (2.1 mb)
Supplementary material 1 (DOC 2187 kb)

References

  1. 1.
    Olowu RA, Ndangili PM, Baleg AA, Ikpo CO, Njomo N, Baker P, Iwuoha E (2011) Spectroelectrochemical dynamics of dendritic poly (propylene imine)-polythiophene star copolymer aptameric 17β-estradiol biosensor. Int J Electrochem Sci 6:1686–1708Google Scholar
  2. 2.
    Bui N-N, Hong J-T, S-i Mho, Jang H-Y (2008) A ferrocene derivative redox sensor for mercuric ion: synthesis and electrochemical study. Notes 29(7):1395Google Scholar
  3. 3.
    Sutcliffe OB, Chesney A, Bryce MR (2001) Voltammetric metal cation sensors based on ferrocene derivatives with oxazoline and imine substituents. J Organomet Chem 637:134–138CrossRefGoogle Scholar
  4. 4.
    Straumal BB, Myatiev A, Straumal P, Mazilkin A, Protasova S, Goering E, Baretzky B (2010) Grain boundary layers in nanocrystalline ferromagnetic zinc oxide. JETP Lett 92(6):396–400CrossRefGoogle Scholar
  5. 5.
    Straumal BB, Protasova S, Mazilkin A, Schütz G, Goering E, Baretzky B, Straumal P (2013) Ferromagnetism of zinc oxide nanograined films. JETP Lett 97(6):367–377CrossRefGoogle Scholar
  6. 6.
    Sharma H, Kaur N, Pandiyan T, Singh N (2012) Surface decoration of ZnO nanoparticles: a new strategy to fine tune the recognition properties of imine linked receptor. Sens Actuat B 166:467–472CrossRefGoogle Scholar
  7. 7.
    Bijad M, Karimi-Maleh H, Khalilzadeh MA (2013) Application of ZnO/CNTs nanocomposite ionic liquid paste electrode as a sensitive voltammetric sensor for determination of ascorbic acid in food samples. Food Anal Methods 6(6):1639–1647Google Scholar
  8. 8.
    Sadeghi R, Karimi-Maleh H, Bahari A, Taghavi M (2013) A novel biosensor based on ZnO nanoparticle/1, 3-dipropylimidazolium bromide ionic liquid-modified carbon paste electrode for square-wave voltammetric determination of epinephrine. Phys Chem Liq 51(6):704–714Google Scholar
  9. 9.
    Karimi-Maleh H, Tahernejad-Javazmi F, Gupta VK, Ahmar H, Asadi MH (2014) A novel biosensor for liquid phase determination of glutathione and amoxicillin in biological and pharmaceutical samples using a ZnO/CNTs nanocomposite/catechol derivative modified electrode. J Mol Liq 196:258–263Google Scholar
  10. 10.
    Karimi-Maleh H, Moazampour M, Ensafi AA, Mallakpour S, Hatami M (2014) An electrochemical nanocomposite modified carbon paste electrode as a sensor for simultaneous determination of hydrazine and phenol in water and wastewater samples. Environ Sci Pollut Res 21(9):5879–5888Google Scholar
  11. 11.
    Karimi-Maleh H, Biparva P, Hatami M (2013) A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosens Bioelectron 48:270–275Google Scholar
  12. 12.
    Elyasi M, Khalilzadeh MA, Karimi-Maleh H (2013) High sensitive voltammetric sensor based on Pt/CNTs nanocomposite modified ionic liquid carbon paste electrode for determination of Sudan I in food samples. Food chem 141(4):4311–4317Google Scholar
  13. 13.
    Karimi‐Maleh H, Tahernejad‐Javazmi F, Daryanavard M, Hadadzadeh H, Ensafi AA, Abbasghorbani M (2014) Electrocatalytic and simultaneous determination of ascorbic acid, nicotinamide adenine dinucleotide and folic acid at Ruthenium (II) complex-ZnO/CNTs nanocomposite modified carbon paste electrode. Electroanalysis 26(5):962–970Google Scholar
  14. 14.
    Kim S, Noh JY, Kim KY, Kim JH, Kang HK, Nam S-W, Kim SH, Park S, Kim C, Kim J (2012) Salicylimine-based fluorescent chemosensor for aluminum ions and application to bioimaging. Inorg chem 51(6):3597–3602Google Scholar
  15. 15.
    Sharma H, Narang K, Singh N, Kaur N (2012) Imine linked chemosensors coupled with ZnO: Fluorescent and chromogenic detection of Al3+. Mater Lett 84:104–106Google Scholar
  16. 16.
    Sharma H, Singh A, Kaur N, Singh N (2013) ZnO-based imine-linked coupled biocompatible chemosensor for nanomolar detection of Co2+. ACS Sustain Chem Eng 1(12):1600–1608CrossRefGoogle Scholar
  17. 17.
    Noh JY, Hwang IH, Kim H, Song EJ, Kim KB, Kim C (2013) Salicylimine-based colorimetric and fluorescent chemosensor for selective detection of cyanide in aqueous buffer. Bull Korean Chem Soc 34(7):1985CrossRefGoogle Scholar
  18. 18.
    Saluja P, Kaur N, Kang J, Singh N, Jang DO (2013) Benzimidazole-based chromogenic chemosensor for the recognition of oxalic acid via counter ion displacement assay in semi-aqueous medium. Tetrahedron 69(43):9001–9006CrossRefGoogle Scholar
  19. 19.
    Saluja P, Bhardwaj VK, Pandiyan T, Kaur S, Kaur N, Singh N (2014) Imine-linked chemosensors for the detection of Zn2+ in biological samples. RSC Adv 4(19):9784–9790CrossRefGoogle Scholar
  20. 20.
    Chappuis P, Poupon J, Rousselet F (1992) A sequential and simple determination of zinc, copper and aluminium in blood samples by inductively coupled plasma atomic emission spectrometry. Clin Chim Acta 206(3):155–165CrossRefGoogle Scholar
  21. 21.
    Melnyk LJ, Morgan JN, Fernando R, Pellizzari ED, Akinbo O (2003) Determination of metals in composite diet samples by inductively coupled plasma-mass spectrometry. J AOAC Int 86(2):439–447Google Scholar
  22. 22.
    Wang H, Yu Z, Wang Z, Hao H, Chen Y, Wan P (2011) Preparation of a preplated bismuth film on Pt electrode and its application for determination of trace aluminum(III) by adsorptive stripping voltammetry. Electroanalysis 23(5):1095–1099CrossRefGoogle Scholar
  23. 23.
    Wiley B, Sun Y, Xia Y (2007) Synthesis of silver nanostructures with controlled shapes and properties. Acc Chem Res 40(10):1067–1076CrossRefGoogle Scholar
  24. 24.
    Chen H, Yuan F, Xu J, Zhang Y, Wu Y, Wang L (2013) Simple and sensitive detection method for Cobalt (II) in water using CePO4: Tb3+ nanocrystals as fluorescent probes. Spectrochim Acta Part A Mol Biomol Spectrosc 107:151–155CrossRefGoogle Scholar
  25. 25.
    Wang Y, Luo X, Tang J, Hu X, Xu Q, Yang C (2012) Extraction and preconcentration of trace levels of cobalt using functionalized magnetic nanoparticles in a sequential injection lab-on-valve system with detection by electrothermal atomic absorption spectrometry. Anal Chim Acta 713:92–96CrossRefGoogle Scholar
  26. 26.
    Awual MR, Ismael M, Yaita T (2014) Efficient detection and extraction of cobalt (II) from lithium ion batteries and wastewater by novel composite adsorbent. Sens Actuat B 191:9–18CrossRefGoogle Scholar
  27. 27.
    Awual MR, Yaita T, Okamoto Y (2014) A novel ligand based dual conjugate adsorbent for cobalt(II) and copper(II) ions capturing from water. Chemical, Sens Actuat BGoogle Scholar
  28. 28.
    Zhang X, Zhou Q, Lv Y, Wu L, Hou X (2010) Ultrasensitive determination of cobalt in single hair by capillary electrophoresis using chemiluminescence detector. Microchem J 95(1):80–84CrossRefGoogle Scholar
  29. 29.
    Saifuddin N, Raziah A, Junizah A (2012) Carbon nanotubes: a review on structure and their interaction with proteins. J Chem 2013:1–18CrossRefGoogle Scholar
  30. 30.
    Choi YW, Park GJ, Na YJ, Jo HY, Lee SA, You GR, Kim C (2014) A single schiff base molecule for recognizing multiple metal ions: a fluorescence sensor for Zn (II) and Al(III) and colorimetric sensor for Fe(II) and Fe(III). Sensors and Actuators B: Chemical 194:343–352CrossRefGoogle Scholar
  31. 31.
    Sen S, Mukherjee T, Chattopadhyay B, Moirangthem A, Basu A, Marek J, Chattopadhyay P (2012) A water soluble Al3+ selective colorimetric and fluorescent turn-on chemosensor and its application in living cell imaging. Analyst 137(17):3975–3981CrossRefGoogle Scholar
  32. 32.
    Gupta VK, Singh A, Ganjali M, Norouzi P, Faridbod F, Mergu N (2013) Comparative study of colorimetric sensors based on newly synthesized Schiff bases. Sensors and Actuators B: Chemical 182:642–651CrossRefGoogle Scholar
  33. 33.
    Chandra S (2013) Synthesis, spectroscopic characterization, molecular modeling and antimicrobial activities of Mn(II), Co(II), Ni(II), Cu(II) complexes containing the tetradentate aza Schiff base ligand. Spectrochim Acta Part A Mol Biomol Spectrosc 103:338–348CrossRefGoogle Scholar
  34. 34.
    Xu H, Tao X, Li Y, Shen Y, Wei Y (2012) Synthesis, characterization and metal ion-sensing properties of two Schiff base derivatives. Spectrochim Acta Part A Mol Biomol Spectrosc 91:375–382CrossRefGoogle Scholar
  35. 35.
    Kumar P, Shim Y-B (2009) A novel cobalt (II)-selective potentiometric sensor based on p-(4-n-butylphenylazo) calix[4] arene. Talanta 77(3):1057–1062CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Susheel K. Mittal
    • 1
  • Rashmi Sharma
    • 1
  • Manisha Sharma
    • 1
  • Narinder Singh
    • 2
  • Jasminder Singh
    • 2
  • Navneet Kaur
    • 3
  • Manmohan Chhibber
    • 1
  1. 1.School of Chemistry & BiochemistryThapar UniversityPatialaIndia
  2. 2.Department of ChemistryIndian Institute of TechnologyRoparIndia
  3. 3.Department of Nanoscience and NanotechnologyPunjab UniversityChandigarhIndia

Personalised recommendations