Journal of Applied Electrochemistry

, Volume 44, Issue 9, pp 989–994 | Cite as

Development of a 3d current collector for the positive electrode in lithium-ion batteries

  • Sandra Poetz
  • Bernd Fuchsbichler
  • Martin Schmuck
  • Stefan Koller
Research Article
Part of the following topical collections:
  1. Batteries

Abstract

So far, expanded metals or metal foils have been used as current collectors for the positive electrode in state of the art lithium-ion batteries (LIBs). In this work, a new 3D current collector for the positive electrode of LIBs was investigated. Non-woven polymer was metallized with Al by physical vapour deposition (PVD). To prove its feasible application as a current collector in LIBs, LiCoO2 (LCO) composite electrodes were fabricated and compared to common LCO composite electrodes coated on “state of the art” aluminium foil. All cathodes were characterised by scanning electron microscopy, as well as electrochemical methods, and the results were compared. In combination with the main advantages of 3D current collectors such as improved mechanical stability and possibility of higher mass loadings, the 3D structure of the non-woven polymer increases the contact surface by five times compared to conventional current collector foils, reducing the assignment of Al significantly.

Keywords

Lithium-ion batteries 3D current collector Aluminium Cathode 

References

  1. 1.
    Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367. doi:10.1038/35104644 CrossRefGoogle Scholar
  2. 2.
    Myung ST, Hitoshi Y, Sun YK (2011) Electrochemical behaviour and passivation of current collectors in lihtium-ion batteries. J Mater Chem 21:9891–9899. doi:10.1039/c0jm04353b CrossRefGoogle Scholar
  3. 3.
    Wang JS, Liu P, Sherman E, Verbrugge M, Tataria H (2011) Formulation and characterization of ultra-thick electrodes for high energy lithium-ion batteries employing tailored metal foams. J Power Sources 196:8714–8718. doi:10.1016/j.jpowsour.2011.06.071 CrossRefGoogle Scholar
  4. 4.
    Hu L, La Mantia F, Wu H, Xie X, McDonough J, Pasta M, Cui Y (2011) Lithium-Ion textile batteries with large aeral mass loading. Adv Energy Mater 1:1012–1017. doi:10.1002/acnm.201100261 CrossRefGoogle Scholar
  5. 5.
    Roberts M, Johns P, Owen J, Brandell D, Edstrom K, El Enany G, Guery C, Golodnitsky D, Lacey M, Lecoeur C, Mazor H, Peled E, Perre E, Shaijumon MM, Simon P, Taberna PL (2011) 3D lithium ion batteries—from fundamentals to fabrication. J Mater Chem 21:9876–9890. doi:10.1039/c0jm04396f CrossRefGoogle Scholar
  6. 6.
    Perre E, Nyholm L, Gustafsson T, Taberna PL, Simon P, Edström K (2008) Direct electrodeposition of aluminium nano-rods. Electrochem Commun 10:1467–1470. doi:10.1016/j.elecom.2008.07.032 CrossRefGoogle Scholar
  7. 7.
    Wang QM, Wand DL, Wang B (2012) Preparation and electrochemical performance of LiFePO4-based electrode using three-dimensional porous current collector. Int J Electrochem Sci 7:8753–8760Google Scholar
  8. 8.
    Sa Q, Wang Y (2012) Ni foam as the current collector for high capacity Si-C composite electrode. J Power Sources 208:46–51. doi:10.1016/j.jpowsour.2012.02.020 CrossRefGoogle Scholar
  9. 9.
    Kang C, Lahiri I, Baskaran R, Kim WG, Sun YK, Choi W (2012) 3-dimensional carbon nanotube for lithium-ion battery anode. J Power Sources 219:364–370. doi:10.1016/j.jpowsour.2012.07.050 CrossRefGoogle Scholar
  10. 10.
    Oltean G, Valvo M, Nyholm L, Edström K (2014) On the electrophoretic and sol-gel deposition of active materials on aluminium rod current collectors for three-dimensional Li-ion micro-batteries. Thin Solid Films 562:63–69. doi:10.1016/j.tsf.2014.03.069 CrossRefGoogle Scholar
  11. 11.
    Edström K, Brandell D, Gustafsson T, Nyholm L (2011) Electrodeposition as a tool for 3D microbattery fabrication. Electrochem Soc Interface 20:41–46Google Scholar
  12. 12.
    Yao M, Okuno K, Iwaki T, Awazu T, Sakai T (2010) Long cycle-life LiFePO4/Cu-Sn lithium ion battery using foam-type three-dimensional current collector. J Power Sources 195:2077–2081. doi:10.1016/j.jpowersour.200910.014 CrossRefGoogle Scholar
  13. 13.
    Ji H, Zhang L, Pettes MT, Li H, Chen S, Shi L, Piner R, Ruoff RS (2012) Ultrathin graphite foam: a three-dimensional conductive network for battery electrodes. Nano Lett 12:2446–2451. doi:10.1021/nl300528p CrossRefGoogle Scholar
  14. 14.
    Easy elox. Eloxal Service & more. http://www.easyelox.de/eloxieren.html. Accessed 27 Sept 2013
  15. 15.
    Myung ST, Sasaki Y, Sakurada S, Sun YK, Yashiro H (2009) Electrochemical bahaviour of current collectors for lithium batteries in non-aqueous alkyl carbonate solution and surface analysis by ToF-SIMS. Electrochim Acta 55:288–297. doi:10.1016/j.electacta.2009.08.051 CrossRefGoogle Scholar
  16. 16.
    Nakajima T, Mori M, Gupta V, Ohzawa Y, Iwata H (2002) Effect of fluoride additives on the corrosion of aluminum for lithium ion batteries. Solid State Sci 4:1385–1394. doi:10.1016/S1293-2558(02)00026-2 CrossRefGoogle Scholar
  17. 17.
    Steube KE, McCrary LE (1974) Thick ion-vapour-deposited aluminum coatings for irregularly shaped aircraft and spacecraft parts. J Vac Sci Technol 11:362–365. doi:10.1116/1.1318621 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Sandra Poetz
    • 1
  • Bernd Fuchsbichler
    • 1
  • Martin Schmuck
    • 1
  • Stefan Koller
    • 1
  1. 1.Varta Micro Innovation GmbHGrazAustria

Personalised recommendations