Advertisement

Journal of Applied Electrochemistry

, Volume 44, Issue 5, pp 573–580 | Cite as

Stable platinum nanostructures on nitrogen-doped carbon obtained by high-temperature synthesis for use in PEMFC

  • B. PeterEmail author
  • J. Melke
  • F. Muench
  • W. Ensinger
  • C. Roth
Research Article

Abstract

We propose a novel, facile synthesis route to produce stable platinum-based polymer electrolyte membrane fuel cell catalysts supported on nitrogen-doped carbon. Platinum nanoparticles were decorated on polyaniline (PANI), a nitrogen-containing polymer, before its subsequent carbonization at 750 °C under nitrogen atmosphere. Thus, nitrogen-doped carbon-supported platinum catalysts were produced with homogeneously distributed small metal particles, which are otherwise difficult to obtain. Most remarkably the platinum nanoparticles did not grow significantly during the carbonization step. In contrast, commercially available standard catalysts on carbon materials subjected to the same heat treatment showed severe particle growth. In accordance with the high thermal stability, the PANI-derived catalyst shows good long-term stability in accelerated stress test and a promising performance as cathode material in 5 × 5 cm2 single cells. The synthesis is carried out without the need for special laboratory equipment, so it will be easy to scale up for industrial catalyst production.

Keywords

PEMFC Nitrogen-doped carbon Carbonization PANI Particle size Catalyst stability 

Notes

Acknowledgments

We gratefully acknowledge financial support from the German Science Foundation DFG (Contract No. RO 2454/10-1).

References

  1. 1.
    Knights SD, Colbow KM, St-Pierre J, Wilkinson DP (2004) Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources 127:127–134. doi: 10.1016/j.jpowsour.2003.09.033 CrossRefGoogle Scholar
  2. 2.
    Sharma S, Pollet BG (2012) Support materials for PEMFC and DMFC electrocatalysts—a review. J Power Sources 208:96–119. doi: 10.1016/j.jpowsour.2012.02.011 CrossRefGoogle Scholar
  3. 3.
    Antolini E (2003) Formation, microstructural characteristics and stability of carbon supported platinum catalysts for low temperature fuel cells. J Mater Sci 38:2995–3005CrossRefGoogle Scholar
  4. 4.
    Bezerra CWB, Zhang L, Liu H et al (2007) A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction. J Power Sources 173:891–908. doi: 10.1016/j.jpowsour.2007.08.028 CrossRefGoogle Scholar
  5. 5.
    Wang W, Chen X, Cai Q et al (2008) In situ SAXS study on size changes of platinum nanoparticles with temperature. Eur Phys J B 65:57–64. doi: 10.1140/epjb/e2008-00322-7 CrossRefGoogle Scholar
  6. 6.
    Han K, Moon Y, Han O et al (2007) Heat treatment and potential cycling effects on surface morphology, particle size, and catalytic activity of Pt/C catalysts studied by 13C NMR, TEM, XRD and CV. Electrochem Commun 9:317–324. doi: 10.1016/j.elecom.2006.09.027 CrossRefGoogle Scholar
  7. 7.
    Zhang L, Lee K, Zhang J (2007) The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd–Co alloy electrocatalysts. Electrochim Acta 52:3088–3094. doi: 10.1016/j.electacta.2006.09.051 CrossRefGoogle Scholar
  8. 8.
    Bett J, Kinoshita K, Stonehart P (1974) Crystallite growth of platinum dispersed on graphitized carbon black. J Catal 133:124–133Google Scholar
  9. 9.
    Bett J, Kinoshita K, Stonehart P (1974) Crystallite growth of platinum dispersed on graphitized carbon black. J Catal 35:307–316CrossRefGoogle Scholar
  10. 10.
    Lisiecki I, Sack-Kongehl H, Weiss K et al (2000) Annealing process of anisotropic copper nanocrystals. 1. Cylinders. Langmuir 16:8802–8806. doi: 10.1021/la0003443 CrossRefGoogle Scholar
  11. 11.
    Blurton KF, Kunz HR, Rutt DR (1978) Surface area loss of platinum supported on graphite. Electrochim Acta 23:183–190CrossRefGoogle Scholar
  12. 12.
    Shao Y, Yin G, Gao Y (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J Power Sources 171:558–566. doi: 10.1016/j.jpowsour.2007.07.004 CrossRefGoogle Scholar
  13. 13.
    Mayrhofer KJJ, Meier JC, Ashton SJ et al (2008) Fuel cell catalyst degradation on the nanoscale. Electrochem Commun 10:1144–1147. doi: 10.1016/j.elecom.2008.05.032 CrossRefGoogle Scholar
  14. 14.
    Zhou Y, Neyerlin K, Olson TS et al (2010) Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ Sci 3:1437–1446. doi: 10.1039/c003710a CrossRefGoogle Scholar
  15. 15.
    Kundu S, Nagaiah TC, Xia W et al (2009) Electrocatalytic activity and stability of nitrogen-containing carbon nanotubes in the oxygen reduction reaction. J Phys Chem C 113:14302–14310. doi: 10.1021/jp811320d CrossRefGoogle Scholar
  16. 16.
    Tuaev X, Paraknowitsch JP, Illgen R et al (2012) Nitrogen-doped coatings on carbon nanotubes and their stabilizing effect on Pt nanoparticles. Phys Chem Chem Phys 14:6444–6447. doi: 10.1039/c2cp40760d CrossRefGoogle Scholar
  17. 17.
    Saha MS, Li R, Sun X, Ye S (2009) 3-D composite electrodes for high performance PEM fuel cells composed of Pt supported on nitrogen-doped carbon nanotubes grown on carbon paper. Electrochem Commun 11:438–441. doi: 10.1016/j.elecom.2008.12.013 CrossRefGoogle Scholar
  18. 18.
    Subramanian NP, Li X, Nallathambi V et al (2009) Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. J Power Sources 188:38–44. doi: 10.1016/j.jpowsour.2008.11.087 CrossRefGoogle Scholar
  19. 19.
    Stejskal J, Sapurina I, Trchová M (2010) Polyaniline nanostructures and the role of aniline oligomers in their formation. Prog Polym Sci 35:1420–1481. doi: 10.1016/j.progpolymsci.2010.07.006 CrossRefGoogle Scholar
  20. 20.
    Guo S, Dong S, Wang E (2009) Polyaniline/Pt hybrid nanofibers: high-efficiency nanoelectrocatalysts for electrochemical devices. Small 5:1869–1876. doi: 10.1002/smll.200900190 CrossRefGoogle Scholar
  21. 21.
    Mabena LF, Sinha Ray S, Mhlanga SD, Coville NJ (2011) Nitrogen-doped carbon nanotubes as a metal catalyst support. Appl Nanosci 1:67–77. doi: 10.1007/s13204-011-0013-4 CrossRefGoogle Scholar
  22. 22.
    Trchová M, Konyushenko EN, Stejskal J et al (2009) The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polym Degrad Stab 94:929–938. doi: 10.1016/j.polymdegradstab.2009.03.001 CrossRefGoogle Scholar
  23. 23.
    Stejskal J, Trchová M, Hromádková J et al (2010) The carbonization of colloidal polyaniline nanoparticles to nitrogen-containing carbon analogues. Polym Int 59:875–878. doi: 10.1002/pi.2858 CrossRefGoogle Scholar
  24. 24.
    Roisnel T, Rodríquez-Carvajal J (2000) WinPLOTR: a windows tool for powder diffraction pattern analysis. In: Delhez R, Mittenmeijer EJ (eds) Material Science Forum. Proceedings of the seventh European powder diffraction conference (EPDIC 7), pp 118–123Google Scholar
  25. 25.
    Lucato dos Santos e. S (1999) Lince. Version 2.4.2. Softw. aus dem Fachbereich Mater. und Geowissenschaften, Fachbereich Nichtmetallische Anorg. Werkstoffe, TU Darmstadt, DarmstadtGoogle Scholar
  26. 26.
    Ball SC, Hudson SL, Thompsett D, Theobald B (2007) An investigation into factors affecting the stability of carbons and carbon supported platinum and platinum/cobalt alloy catalysts during 1.2 V potentiostatic hold regimes at a range of temperatures. J Power Sources 171:18–25. doi: 10.1016/j.jpowsour.2006.11.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • B. Peter
    • 1
    Email author
  • J. Melke
    • 2
  • F. Muench
    • 1
  • W. Ensinger
    • 1
  • C. Roth
    • 3
  1. 1.Institute for Materials ScienceTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Institute of Inorganic ChemistryKarlsruhe Institute of TechnologyKarlsruheGermany
  3. 3.Physikalische und Theoretische ChemieFreie Universität BerlinBerlinGermany

Personalised recommendations