Journal of Applied Electrochemistry

, Volume 44, Issue 4, pp 455–465 | Cite as

Electrodeposition and characterization of nickel–copper metallic foams for application as electrodes for supercapacitors

  • S. Eugénio
  • T. M. Silva
  • M. J. Carmezim
  • R. G. Duarte
  • M. F. Montemor
Research Article


Nickel–copper metallic foams were electrodeposited from an acidic electrolyte, using hydrogen bubble evolution as a dynamic template. Their morphology and chemical composition was studied by scanning electron microscopy and related to the deposition parameters (applied current density and deposition time). For high currents densities (above 1 A cm−2) the nickel–copper deposits have a three-dimensional foam-like morphology with randomly distributed nearly-circular pores whose walls present an open dendritic structure. The nickel–copper foams are crystalline and composed of pure nickel and a copper-rich phase containing nickel in solid solution. The electrochemical behaviour of the material was studied by cyclic voltammetry and chronopotentiometry (charge–discharge curves) aiming at its application as a positive electrode for supercapacitors. Cyclic voltammograms showed that the Ni–Cu foams have a pseudocapacitive behaviour. The specific capacitance was calculated from charge–discharge data and the best value (105 F g−1 at 1 mA cm−2) was obtained for nickel–copper foams deposited at 1.8 A cm−2 for 180 s. Cycling stability of these foams was also assessed and they present a 90 % capacitance retention after 10,000 cycles at 10 mA cm−2.


Nickel–copper Nanostructured foams Electrodeposition Electrodes for supercapacitors 



The authors would like to acknowledge financial support from Fundação para a Ciência e Tecnologia (FCT) under the project PTDC/CTM-MET/119411/2010 “Electrodeposition of oxide spinel films on stainless steel substrates for the development of new electrodes for supercapacitors”, COST Action MP1004-“Hybrid Energy Storage Devices and Systems for Mobile and Stationary Applications” and COST Action MP1106-“Smart and green interfaces—from single bubbles and drops to industrial, environmental and biomedical applications”


  1. 1.
    Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41(2):797–828CrossRefGoogle Scholar
  2. 2.
    Tappan BC, Steiner SA, Luther EP (2010) Nanoporous metal foams. Angew Chem Int Ed 49(27):4544–4565CrossRefGoogle Scholar
  3. 3.
    Erlebacher J et al (2001) Evolution of nanoporosity in dealloying. Nature 410:450–453CrossRefGoogle Scholar
  4. 4.
    Silva RP et al (2012) Fabrication of three-dimensional dendritic Ni–Co films by electrodeposition on stainless steel substrates. J Phys Chem C 116(42):22425–22431CrossRefGoogle Scholar
  5. 5.
    Nikolić ND et al (2006) Morphologies of copper deposits obtained by the electrodeposition at high overpotentials. Surf Coat Technol 201:560–566CrossRefGoogle Scholar
  6. 6.
    Shin H-C, Liu M (2004) Copper foam structures with highly porous nanostructured walls. Chem Mater 16:5460–5464CrossRefGoogle Scholar
  7. 7.
    Shin HC, Dong J, Liu M (2003) Nanoporous structures prepared by an electrochemical deposition process. Adv Mater 15:1610–1614CrossRefGoogle Scholar
  8. 8.
    Nikolić N (2010) Fundamental aspects of copper electrodeposition in the hydrogen co-deposition range. Zaštita materijala 51:197–203Google Scholar
  9. 9.
    Nikolić ND et al (2006) Phenomenology of a formation of a honeycomb-like structure during copper electrodeposition. J Solid State Electrochem 11:667–675CrossRefGoogle Scholar
  10. 10.
    Tan K, Tian M-B, Cai Q (2010) Effect of bromide ions and polyethylene glycol on morphological control of electrodeposited copper foam. Thin Solid Films 518:5159–5163CrossRefGoogle Scholar
  11. 11.
    Nam D et al (2011) Effects of (NH4)2SO4 and BTA on the nanostructure of copper foam prepared by electrodeposition. Electrochim Acta 56:9397–9405CrossRefGoogle Scholar
  12. 12.
    Cherevko S, Xing X, Chung C-H (2010) Electrodeposition of three-dimensional porous silver foams. Electrochem Commun 12:467–470CrossRefGoogle Scholar
  13. 13.
    Yang G-M et al (2011) Bubble dynamic templated deposition of three-dimensional palladium nanostructure catalysts: approach to oxygen reduction using macro-, micro-, and nano-architectures on electrode surfaces. Electrochim Acta 56:6771–6778CrossRefGoogle Scholar
  14. 14.
    Cherevko S, Chung C-H (2011) Direct electrodeposition of nanoporous gold with controlled multimodal pore size distribution. Electrochem Commun 13(1):16–19CrossRefGoogle Scholar
  15. 15.
    Choi W-S et al (2012) Nanostructured metallic foam electrodeposits on a nonconductive substrate. J Mater Chem 22:1028–1032CrossRefGoogle Scholar
  16. 16.
    Cullity BD (1978) Elements of X-ray diffraction. Addison-Wesley Publishing Company, BostonGoogle Scholar
  17. 17.
    Pourbaix M (1974) Atlas of electrochemical equilibria, 2nd edn. National Association of Corrosion Engineers, HoustonGoogle Scholar
  18. 18.
    Brenner A (1963) Electrodeposition of alloys principles and practice. Academic Press, San DiegoGoogle Scholar
  19. 19.
    Mattsson E, Bockris JM (1959) Galvanostatic studies of the kinetics of deposition and dissolution in the copper + copper sulphate system. Trans Faraday Soc 55:1586–1601CrossRefGoogle Scholar
  20. 20.
    Gabrielli C et al (2004) Mechanism of copper deposition in a sulphate bath containing chlorides. J Electroanal Chem 572:367–375CrossRefGoogle Scholar
  21. 21.
    Soares DM et al (2002) Copper ion reduction catalyzed by chloride ions. J Electroanal Chem 532:353–358CrossRefGoogle Scholar
  22. 22.
    Shao W, Pattanaik G, Zangari G (2007) Influence of chloride anions on the mechanism of copper electrodeposition from acidic sulfate electrolytes. J Electrochem Soc 154:D201–D207CrossRefGoogle Scholar
  23. 23.
    Epelboin I, Joussellin M, Wiart R (1981) Impedance measurements for nickel deposition in sulfate and chloride electrolytes. J Electroanal Chem 119:61–71CrossRefGoogle Scholar
  24. 24.
    Oriňáková R et al (2006) Recent developments in the electrodeposition of nickel and some nickel-based alloys. J Appl Electrochem 36:957–972CrossRefGoogle Scholar
  25. 25.
    Saraby-Reintjes A, Fleischmann M (1984) Kinetics of electrodeposition of nickel from watts baths. Electrochim Acta 29(4):557–566CrossRefGoogle Scholar
  26. 26.
    Santana AIC et al (2009) A kinetic study on nickel electrodeposition from sulfate acid solutions. J Electrochem Soc 156:D326–D330CrossRefGoogle Scholar
  27. 27.
    Chakrabarti DJ et al (1992) Cu–Ni (copper–nickel) phase diagram. In: Metals handbook, vol. 3: alloy phase diagrams. ASM International, RusselGoogle Scholar
  28. 28.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Kluwer Academic, New YorkCrossRefGoogle Scholar
  29. 29.
    Yau S-L et al (1994) In situ scanning tunneling microscopy of Ni (100) in 1 M NaOH. J Phys Chem 98(21):5493–5499CrossRefGoogle Scholar
  30. 30.
    Hu C–C, Chang K-H, Hsu T-Y (2008) The synergistic influences of OH concentration and electrolyte conductivity on the redox behavior of Ni(OH)2/NiOOH. J Electrochem Soc 155(8):F196–F200CrossRefGoogle Scholar
  31. 31.
    Medina AMCLd, Marciano SL, Arvia AJ (1978) The potentiodynamic behaviour of copper in NaOH solutions. J Appl Electrochem 8:121–134CrossRefGoogle Scholar
  32. 32.
    Ismail K, Fathi A, Badawy W (2004) The influence of Ni content on the stability of copper–nickel alloys in alkaline sulphate solutions. J Appl Electrochem 34(8):823–831CrossRefGoogle Scholar
  33. 33.
    Bard AJ, Faulkner LR (2001) Electrochemical methods fundamentals and applications. Wiley, New YorkGoogle Scholar
  34. 34.
    Meher SK, Justin P, Ranga Rao G (2011) Nanoscale morphology dependent pseudocapacitance of NiO. Influence of intercalating anions during synthesis. Nanoscale 3(2):683–692CrossRefGoogle Scholar
  35. 35.
    Menshykau D, Compton RG (2008) The influence of electrode porosity on diffusional cyclic voltammetry. Electroanalysis 20(22):2387–2394CrossRefGoogle Scholar
  36. 36.
    Wu M-S et al (2007) Electrodeposition of nanoporous nickel oxide film for electrochemical capacitors. Int J Hydrogen Energy 32(17):4153–4159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. Eugénio
    • 1
  • T. M. Silva
    • 1
    • 2
  • M. J. Carmezim
    • 1
    • 3
  • R. G. Duarte
    • 1
    • 4
  • M. F. Montemor
    • 1
    • 5
  1. 1.ICEMS, Instituto Superior TécnicoUniversity of LisbonLisbonPortugal
  2. 2.Department of Mechanical EngineeringInstituto Superior de Engenharia de LisboaLisbonPortugal
  3. 3.ESTSetúbalInstituto Politécnico de SetúbalSetúbalPortugal
  4. 4.ESTBarreiroInstituto Politécnico de SetúbalBarreiroPortugal
  5. 5.Department of Chemical Engineering, Instituto Superior TécnicoUniversity of LisbonLisbonPortugal

Personalised recommendations