Journal of Applied Electrochemistry

, Volume 44, Issue 1, pp 5–22 | Cite as

A review of high energy density lithium–air battery technology

Review Paper

Abstract

Today’s lithium (Li)-ion batteries have been widely adopted as the power of choice for small electronic devices through to large power systems such as hybrid electric vehicles (HEVs) or electric vehicles (EVs). However, it falls short of meeting the demands of new markets in these areas of EVs or HEVs due to insufficient energy density. Therefore, new battery systems such as Li–air batteries with high theoretical specific energy are being intensively investigated, as this technology could potentially make long-range EVs widely affordable. So far, Li–air battery technology is still in its infancy and will require significant research efforts. This review provides a comprehensive overview of the fundamentals of Li–air batteries, with an emphasis on the recent progress of various elements, such as lithium metal anode, cathode, electrolytes, and catalysts. Firstly, it covers the various types of air cathode used, such as the air cathode based on carbon, the carbon nanotube-based cathode, and the graphene-based cathode. Secondly, different types of catalysts such as metal oxide- and composite-based catalysts, carbon- and graphene-based catalysts, and precious metal alloy-based catalysts are elaborated. The challenges and recent developments on electrolytes and lithium metal anode are then summarized. Finally, a summary of future research directions in the field of lithium air batteries is provided.

Keywords

Energy density Lithium Anode Cathode Catalyst Electrolyte 

References

  1. 1.
    Soloveichik GL (2011) Battery technologies for large-scale stationary energy storage. Annu Rev Chem Biomol Eng 2:503–527. doi:10.1146/annurev-chembioeng-061010-114116 Google Scholar
  2. 2.
    Winter M, Brodd RJ (2004) What are batteries, fuel cells, and supercapacitors? Chem Rev 104:4245–4269Google Scholar
  3. 3.
    Tarascon J-M, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367Google Scholar
  4. 4.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657Google Scholar
  5. 5.
    Anderman M, Kalhammer FR, MacArthur D (2000) Advanced batteries for electric vehicles: an assessment of performance, cost, and availability. Prepared for State of California Air Resources Board, SacramentoGoogle Scholar
  6. 6.
    Taniguchi A, Fujioka N, Ikoma M, Ohta A et al (2001) Development of nickel/metal-hydride batteries for EVs and HEVs. J Power Sources 100(1–2):117–124. doi:10.1016/S0378-7753(01)00889-8 Google Scholar
  7. 7.
    Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195(9):2419–2430Google Scholar
  8. 8.
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium-air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203Google Scholar
  9. 9.
    Zheng J, Liang R, Hendrickson M, Plichta E (2008) Theoretical energy density of Li–air batteries. J Electrochem Soc 155(6):A432–A437Google Scholar
  10. 10.
    Kraytsberg A, Ein-Eli Y (2011) Review on Li–air batteries—opportunities, limitations and perspective. J Power Sources 196(3):886–893Google Scholar
  11. 11.
    Lu YC, Gasteiger HA, Parent MC, Chiloyan V, Shao-Horn Y (2010) The influence of catalysts on discharge and charge voltages of rechargeable Li–oxygen batteries. Electrochem Solid-State Lett 13(6):A69–A72Google Scholar
  12. 12.
    Zhang T, Imanishi N, Shimonishi Y, Hirano A, Takeda Y, Yamamoto O, Sammes N (2010) A novel high energy density rechargeable lithium/air battery. Chem Commun 46(10):1661–1663Google Scholar
  13. 13.
    Xu W, Xu K, Viswanathan VV, Towne SA, Hardy JS, Xiao J, Nie Z, Hu D, Wang D, Zhang J-G (2011) Reaction mechanisms for the limited reversibility of Li–O2 chemistry in organic carbonate electrolytes. J Power Sources 196(22):9631–9639. doi:10.1016/j.jpowsour.2011.06.099 Google Scholar
  14. 14.
    Hardwick LJ, Bruce PG (2012) The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes. Curr Opin Solid State Mater Sci 16:178–185Google Scholar
  15. 15.
    Abraham K, Jiang Z (1996) A polymer electrolyte-based rechargeable lithium/oxygen battery. J Electrochem Soc 143(1):1–5Google Scholar
  16. 16.
    Read J (2002) Characterization of the lithium/oxygen organic electrolyte battery. J Electrochem Soc 149(9):A1190–A1195Google Scholar
  17. 17.
    Ogasawara T, Débart A, Holzapfel M, Novák P, Bruce PG (2006) Rechargeable Li2O2 electrode for lithium batteries. J Am Chem Soc 128(4):1390–1393. doi:10.1021/ja056811q Google Scholar
  18. 18.
    Peng Z, Freunberger SA, Hardwick LJ, Chen Y, Giordani V, Bardé F, Novák P, Graham D, Tarascon JM, Bruce PG (2011) Oxygen reactions in a non-aqueous Li+ electrolyte. Angew Chem Int Ed 123(28):6475–6479Google Scholar
  19. 19.
    Cheng H, Scott K (2011) Selection of oxygen reduction catalysts for rechargeable lithium–air batteries—metal or oxide? Appl Catal B 108:140–151Google Scholar
  20. 20.
    Laoire CO, Mukerjee S, Abraham K, Plichta EJ, Hendrickson MA (2010) Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium− air battery. J Phys Chem C 114(19):9178–9186Google Scholar
  21. 21.
    Zhong L, Mitchell RR, Liu Y, Gallant BM, Thompson CV, Huang JY, Mao SX, Shao-Horn Y (2013) In situ transmission electron microscopy observations of electrochemical oxidation of Li2O2. Nano Lett 13(5):2209–2214Google Scholar
  22. 22.
    Xu K (2004) Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev Columb 104(10):4303–4418Google Scholar
  23. 23.
    Kowalczk I, Read J, Salomon M (2007) Li-air batteries: a classic example of limitations owing to solubilities. Pure Appl Chem 79(5):851–860Google Scholar
  24. 24.
    He P, Wang Y, Zhou H (2010) A Li-air fuel cell with recycle aqueous electrolyte for improved stability. Electrochem Commun 12(12):1686–1689Google Scholar
  25. 25.
    Kumar B, Kumar J, Leese R, Fellner JP, Rodrigues SJ, Abraham KM (2010) A solid-state, rechargeable, long cycle life lithium-air battery. J Electrochem Soc 157(1):50–54Google Scholar
  26. 26.
    Kumar B, Kumar J (2010) Cathodes for solid-state lithium–oxygen cells: roles of NASICON glass-ceramics. J Electrochem Soc 157(5):A611–A616Google Scholar
  27. 27.
    Zhang LL, Wang ZL, Xu D, Zhang XB, Wang LM (2012) The development and challenges of rechargeable non-aqueous lithium–air batteries. Int Smart Nano Mater 1:1–20Google Scholar
  28. 28.
    Yoo E, Zhou H (2011) Li-air rechargeable battery based on metal-free graphene nanosheet catalysts. ACS Nano 5(4):3020–3026Google Scholar
  29. 29.
    Zhang SS, Foster D, Read J (2010) Discharge characteristic of a non-aqueous electrolyte Li/O2 battery. J Power Sources 195(4):1235–1240Google Scholar
  30. 30.
    Whittingham MS (2012) Metal-air batteries: a reality check. Electrochem Soc, PRiME, Honolulu, USAGoogle Scholar
  31. 31.
    Xiao J, Wang D, Xu W, Williford RE, Liu J, Zhang JG (2010) Optimization of air electrode for Li/air batteries. J Electrochem Soc 157(4):A487–A492Google Scholar
  32. 32.
    Yang Y, Sun Q, Li YS, Li H, Fu ZW (2011) Nanostructured diamond like carbon thin film electrodes for lithium air batteries. J Electrochem Soc 158(10):B1211–B1216Google Scholar
  33. 33.
    Wang Y, Cheng L, Li F, Xiong H, Xia Y (2007) High electrocatalytic performance of Mn3O4/mesoporous carbon composite for oxygen reduction in alkaline solutions. Chem Mater 19(8):2095–2101Google Scholar
  34. 34.
    Williford RE, Zhang JG (2009) Air electrode design for sustained high power operation of Li/air batteries. J Power Sources 194(2):1164–1170Google Scholar
  35. 35.
    Stevens P, Toussaint G, Vinatier P, Puech L (2012) Very high specific surface area capacity lithium-air battery. Electrochem Soc, PRiME, Honolulu, USAGoogle Scholar
  36. 36.
    Cheng H, Scott K (2010) Carbon-supported manganese oxide nanocatalysts for rechargeable lithium–air batteries. J Power Sources 195(5):1370–1374. doi:10.1016/j.jpowsour.2009.09.030 Google Scholar
  37. 37.
    Yang XH, He P, Xia Y-y (2009) Preparation of mesocellular carbon foam and its application for lithium/oxygen battery. Electrochem Commun 11(6):1127–1130. doi:10.1016/j.elecom.2009.03.029 Google Scholar
  38. 38.
    Mirzaeian M, Hall PJ (2009) Preparation of controlled porosity carbon aerogels for energy storage in rechargeable lithium oxygen batteries. Electrochim Acta 54(28):7444–7451Google Scholar
  39. 39.
    Ren X, Zhang SS, Tran DT, Read J (2011) Oxygen reduction reaction catalyst on lithium/air battery discharge performance. J Mater Chem 21(27):10118–10125Google Scholar
  40. 40.
    Arai H, Müller S, Haas O (2000) AC impedance analysis of bifunctional air electrodes for metal-air batteries. J Electrochem Soc 147(10):3584–3591Google Scholar
  41. 41.
    Ottakam Thotiyl MM, Freunberger SA, Peng Z, Bruce PG (2013) The carbon electrode in nonaqueous Li–O2 cells. J Am Chem Soc 135(1):494–500Google Scholar
  42. 42.
    Ohkuma H, Uechi I, Matsui M, Takeda Y, Yamamoto O, Imanishi N (2014) Stability of carbon electrodes for aqueous lithium-air secondary batteries. J Power Sources 245:947–952Google Scholar
  43. 43.
    Song MK, Park S, Alamgir FM, Cho J, Liu M (2011) Nanostructured electrodes for lithium-ion and lithium-air batteries: the latest developments, challenges, and perspectives. Mater Sci Eng R 72(11):203–252Google Scholar
  44. 44.
    Mitchell RR, Gallant BM, Thompson CV, Shao-Horn Y (2011) All-carbon-nanofiber electrodes for high-energy rechargeable Li–O2 batteries. Energy Environ Sci 4(8):2952–2958Google Scholar
  45. 45.
    Jiang K, Wang J, Li Q, Liu L, Liu C, Fan S (2011) Superaligned carbon nanotube arrays, films, and yarns: a road to applications. Adv Mater 23(9):1154–1161Google Scholar
  46. 46.
    Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764Google Scholar
  47. 47.
    Tang Y, Allen BL, Kauffman DR, Star A (2009) Electrocatalytic activity of nitrogen-doped carbon nanotube cups. J Am Chem Soc 131(37):13200–13201Google Scholar
  48. 48.
    Li H, Liu H, Jong Z, Qu W, Geng D, Sun X, Wang H (2011) Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media. Int J Hydrogen Energy 36(3):2258–2265Google Scholar
  49. 49.
    Shao Y, Wang X, Engelhard M, Wang C, Dai S, Liu J, Yang Z, Lin Y (2010) Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries. J Power Sources 195(13):4375–4379. doi:10.1016/j.jpowsour.2010.01.015 Google Scholar
  50. 50.
    Kichambare P, Kumar J, Rodrigues S, Kumar B (2011) Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium–oxygen batteries. J Power Sources 196(6):3310–3316Google Scholar
  51. 51.
    Kichambare P, Rodrigues S, Kumar J (2012) Mesoporous nitrogen-doped carbon-glass ceramic cathodes for solid-state lithium–oxygen batteries. ACS Appl Mater Interfaces 4:49–52Google Scholar
  52. 52.
    Li Y, Wang J, Li X, Liu J, Geng D, Yang J, Li R, Sun X (2011) Nitrogen-doped carbon nanotubes as cathode for lithium–air batteries. Electrochem Commun 13(7):668–672Google Scholar
  53. 53.
    Xiao J, Mei D, Li X, Xu W, Wang D, Graff GL, Bennett WD, Nie Z, Saraf LV, Aksay IA (2011) Hierarchically porous graphene as a lithium–air battery electrode. Nano Lett 11(11):5071–5078Google Scholar
  54. 54.
    Li Y, Wang J, Li X, Geng D, Li R, Sun X (2011) Superior energy capacity of graphene nanosheets for a nonaqueous lithium-oxygen battery. Chem Commun 47(33):9438–9440Google Scholar
  55. 55.
    Sun B, Wang B, Su D, Xiao L, Ahn H, Wang G (2012) Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance. Carbon 50(2):727–733Google Scholar
  56. 56.
    Li Y, Wang J, Li X, Geng D, Banis MN, Li R, Sun X (2012) Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries. Electrochem Commun 18:12–15. doi:10.1016/j.elecom.2012.01.023 Google Scholar
  57. 57.
    Li Y, Wang J, Li X, Geng D, Banis MN, Tang Y, Wang D, Li R, Sham TK, Sun X (2012) Discharge product morphology and increased charge performance of lithium-oxygen batteries with graphene nanosheet electrodes: the effect of sulphur doping. J Mater Chem 22:20170–20174Google Scholar
  58. 58.
    Adams BD, Oh SH, Black Robert, Baran-Harper A, Nazar LF (2012) Investigation of ORR and OER in non-aqueous (and aqueous) Li-O2 cells using metal oxide catalysts. Electrochem Soc, PRiME, Honolulu, USAGoogle Scholar
  59. 59.
    Dobley A, DiCarlo J, Abraham K et al (2004) Non-aqueous lithium-air batteries with an advanced cathode structure. In: Yardley Technical Products, Inc./Lithion, Inc. Pawcatuck, CT 41st Power Sources Conference Proceedings, Philadelphia, PAGoogle Scholar
  60. 60.
    Zhang G, Zheng J, Liang R, Zhang C, Wang B, Au M, Hendrickson M, Plichta E (2011) α-MnO2/carbon nanotube/carbon nanofiber composite catalytic air electrodes for rechargeable lithium-air batteries. J Electrochem Soc 158(7):A822–A827Google Scholar
  61. 61.
    Débart A, Bao J, Armstrong G, Bruce PG (2007) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 174(2):1177–1182Google Scholar
  62. 62.
    Débart A, Paterson AJ, Bao J, Bruce PG (2008) α-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. Angew Chem Int Ed 120(24):4597–4600Google Scholar
  63. 63.
    Orellana W (2012) Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: a theoretical study. Chem Phys Lett 541:81–84Google Scholar
  64. 64.
    Kuboki T, Okuyama T, Ohsaki T, Takami N (2005) Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte. J Power Sources 146(1–2):766–769. doi:10.1016/j.jpowsour.2005.03.082 Google Scholar
  65. 65.
    Zhang SS, Ren X, Read J (2011) Heat-treated metal phthalocyanine complex as an oxygen reduction catalyst for non-aqueous electrolyte Li/air batteries. Electrochim Acta 56(12):4544–4548. doi:10.1016/j.electacta.2011.02.072 Google Scholar
  66. 66.
    Kim H, Lee K, Woo SI, Jung Y (2011) On the mechanism of enhanced oxygen reduction reaction in nitrogen-doped graphene nanoribbons. Phys Chem Chem Phys 13(39):17505–17510Google Scholar
  67. 67.
    Lee DU, Yu A, Park HW, Nickel CZ (2012) Cobalt oxide nanostructures on graphene as an active bifunctional electrocatalyst. Electrochem Soc, PRiME, Honolulu, USAGoogle Scholar
  68. 68.
    Wang L, Zhao X, Lu Y, Xu M, Zhang D, Ruoff RS, Stevenson KJ, Goodenough JB (2011) CoMn2O4 spinel nanoparticles grown on graphene as bifunctional catalyst for lithium-air batteries. J Electrochem Soc 158(12):A1379–A1382Google Scholar
  69. 69.
    Wu G, Mack NH, Gao W, Ma S, Zhong R, Han J, Baldwin JK, Zelenay P (2012) Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes. ACS Nano 6(11):9764–9776Google Scholar
  70. 70.
    Lu YC, Xu Z, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) Platinum− gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium− air batteries. J Am Chem Soc 132(35):12170–12171Google Scholar
  71. 71.
    Bian X, Guo K, Liao L, Xiao J, Kong J, Ji C, Liu B (2012) Nanocomposites of palladium nanoparticle-loaded mesoporous carbon nanospheres for the electrochemical determination of hydrogen peroxide. Talanta 99:256–261Google Scholar
  72. 72.
    Bidault F, Kucernak A (2011) Cathode development for alkaline fuel cells based on a porous silver membrane. J Power Sources 196(11):4950–4956Google Scholar
  73. 73.
    Erikson H, Sarapuu A, Alexeyeva N, Tammeveski K, Solla-Gullón J, Feliu J (2012) Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim Acta 59:329–335Google Scholar
  74. 74.
    Spendelow JS, Wieckowski A (2007) Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys Chem Chem Phys 9(21):2654–2675Google Scholar
  75. 75.
    Tang W, Zhang L, Henkelman G (2011) Catalytic activity of Pd/Cu random alloy nanoparticles for oxygen reduction. J Phys Chem Lett 2(11):1328–1331Google Scholar
  76. 76.
    Thapa AK, Ishihara T (2011) Mesoporous α-MnO2/Pd catalyst air electrode for rechargeable lithium–air battery. J Power Sources 196(16):7016–7020. doi:10.1016/j.jpowsour.2010.09.112 Google Scholar
  77. 77.
    Lu Y-C, Gasteiger HA, Shao-Horn Y (2011) Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries. J Am Chem Soc 133(47):19048–19051Google Scholar
  78. 78.
    Zhang T, Imanishi N, Shimonishi Y, Hirano A, Xie J, Takeda Y, Yamamoto O, Sammes N (2010) Stability of a water-stable lithium metal anode for a lithium–air battery with acetic acid–water solutions. J Electrochem Soc 157(2):A214–A218Google Scholar
  79. 79.
    Wang Y, He P, Zhou H (2011) A lithium–air capacitor–battery based on a hybrid electrolyte. Energy Environ Sci 4(12):4994–4999Google Scholar
  80. 80.
    Shao Y, Ding F, Xiao J, Zhang J, Xu W, Park S, Zhang JG, Wang Y, Liu J (2012) Making Li/air batteries rechargeable: material challenges. Adv Funct Mater 23(8):987–1004Google Scholar
  81. 81.
    Read J, Mutolo K, Ervin M, Behl W, Wolfenstine J, Driedger A, Foster D (2003) Oxygen transport properties of organic electrolytes and performance of lithium/oxygen battery. J Electrochem Soc 150(10):A1351–A1356Google Scholar
  82. 82.
    Wu B, Chen X, Zhang C, Mu D, Wu F (2012) Lithium–air and lithium–copper batteries based on a polymer stabilized interface between two immiscible electrolytic solutions (ITIES). New J Chem 36(10):2140–2145Google Scholar
  83. 83.
    Freunberger SA, Chen Y, Peng Z, Griffin JM, Hardwick LJ, Bardé F, Novák P, Bruce PG (2011) Reactions in the rechargeable lithium–O2 battery with alkyl carbonate electrolytes. J Am Chem Soc 133(20):8040–8047. doi:10.1021/ja2021747 Google Scholar
  84. 84.
    CormacÓ Laoire SM, Plichta EJ, Hendrickson MA, Abraham KM (2011) Rechargeable lithium/TEGDME- LiPF6/O2 battery batteries and energy storage. J Electrochem Soc 158(3):A302–A308Google Scholar
  85. 85.
    Freunberger SA, Chen Y, Drewett NE, Hardwick LJ, Bardé F, Bruce PG (2011) The lithium–oxygen battery with ether-based electrolytes. Angew Chem Int Ed 50(37):8609–8613. doi:10.1002/anie.201102357 Google Scholar
  86. 86.
    Xu W, Xiao J, Wang D, Zhang J, Zhang JG (2010) Effects of nonaqueous electrolytes on the performance of lithium/air batteries. J Electrochem Soc 157(2):A219–A224Google Scholar
  87. 87.
    Padbury R, Zhang X (2011) Lithium–oxygen batteries—limiting factors that affect performance. J Power Sources 196(10):4436–4444Google Scholar
  88. 88.
    Yu X, Bates J, Jellison G, Hart F (1997) A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J Electrochem Soc 144(2):524–532Google Scholar
  89. 89.
    Christensen J, Albertus P, Sanchez-Carrera RS, Lohmann T, Kozinsky B, Liedtke R, Ahmed J, Kojic A (2011) A critical review of Li/air batteries. J Electrochem Soc 159(2):R1–R30Google Scholar
  90. 90.
    Christopher P, Rhodes YF, Mullings M, Uselton K, Cross J Solid-state lithium batteries using thio-LISICON solid-state electrolytes. Lynntech, Inc. 7610 Eastmark Dr., College Station, TX 77840. https://web.ornl.gov/ccsd_registrations/battery/abstracts/Solidstate%20batteries_abstract_Rhodes_2010-08-30.pdf. Accessed 25 April 2013
  91. 91.
    Thangadurai V (2012) Recent developments in solid Li-ion electrolytes. PRiME, HonoluluGoogle Scholar
  92. 92.
    Zhang D, Li R, Huang T, Yu A (2010) Novel composite polymer electrolyte for lithium air batteries. J Power Sources 195(4):1202–1206Google Scholar
  93. 93.
    Nanjundiah C, McDevitt S, Koch V (1997) Differential capacitance measurements in solvent-free ionic liquids at Hg and C interfaces. J Electrochem Soc 144(10):3392–3397Google Scholar
  94. 94.
    Manthiram A, Li L, Fu Y (2012) Dual-electrolyte lithium-air batteries with buffer catholytes. Electrochem Soc, PRiME, Honolulu, USAGoogle Scholar
  95. 95.
    Peng Z, Freunberger SA, Chen Y, Bruce PG (2012) A reversible and higher-rate Li-O2 battery. Science 337(6094):563–566Google Scholar
  96. 96.
    Whittingham MS (1976) Electrical energy storage and intercalation chemistry. Science 192(4244):1126–1127Google Scholar
  97. 97.
    Aurbach D, Zinigrad E, Teller H, Dan P (2000) Factors which limit the cycle life of rechargeable lithium (metal) batteries. J Electrochem Soc 147(4):1274–1279Google Scholar
  98. 98.
    Park MS, Yoon WY (2003) Characteristics of a Li/MnO2 battery using a lithium powder anode at high-rate discharge. J Power Sources 114(2):237–243. doi:10.1016/S0378-7753(02)00581-5 Google Scholar
  99. 99.
    Kong S-K, Kim B-K, Yoon W-Y (2012) Electrochemical behavior of Li-powder anode in high Li capacity used. J Electrochem Soc 159(9):A1551–A1553Google Scholar
  100. 100.
    Aurbach D, Talyosef Y, Markovsky B, Markevich E, Zinigrad E, Asraf L, Gnanaraj JS, Kim H-J (2004) Design of electrolyte solutions for Li and Li-ion batteries: a review. Electrochim Acta 50(2–3):247–254. doi:10.1016/j.electacta.2004.01.090 Google Scholar
  101. 101.
    Aurbach D, Zinigrad E, Cohen Y, Teller H (2002) A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion 148(3–4):405–416. doi:10.1016/S0167-2738(02)00080-2 Google Scholar
  102. 102.
    Novák P, Müller K, Santhanam K, Haas O (1997) Electrochemically active polymers for rechargeable batteries. Chem Rev 97(1):207–282Google Scholar
  103. 103.
    Pokhodenko VD, Koshechko VG, Krylov VA (1993) New electrolytes and polymer cathode materials for lithium batteries. J Power Sources 45(1):1–5. doi:10.1016/0378-7753(93)80001-6 Google Scholar
  104. 104.
    Takehara Z-i, Ogumi Z, Uchimoto Y, Yasuda K, Yoshida H (1993) Modification of lithium/electrolyte interface by plasma polymerization of 1,1-difluoroethene. J Power Sources 44(1–3):377–383. doi:10.1016/0378-7753(93)80177-Q Google Scholar
  105. 105.
    Lee YM, Choi NS, Park JH, Park JK (2003) Electrochemical performance of lithium/sulfur batteries with protected Li anodes. J Power Sources 119:964–972Google Scholar
  106. 106.
    Matsuda Y, Ishikawa M, Yoshitake S, Morita M (1995) Characterization of the lithium-organic electrolyte interface containing inorganic and organic additives by in situ techniques. J Power Sources 54(2):301–305Google Scholar
  107. 107.
    Choi N-S, Lee YM, Cho KY, Ko D-H, Park J-K (2004) Protective layer with oligo (ethylene glycol) borate anion receptor for lithium metal electrode stabilization. Electrochem Commun 6(12):1238–1242. doi:10.1016/j.elecom.2004.09.023 Google Scholar
  108. 108.
    Choi N-S, Lee YM, Seol W, Lee JA, Park J-K (2004) Protective coating of lithium metal electrode for interfacial enhancement with gel polymer electrolyte. Solid State Ion 172(1):19–24Google Scholar
  109. 109.
    Ishikawa M, Kanemoto M, Morita M (1999) Control of lithium metal anode cycleability by electrolyte temperature. J Power Sources 81–82:217–220. doi:10.1016/S0378-7753(98)00213-4 Google Scholar
  110. 110.
    Ishikawa M, Takaki Y, Morita M, Matsuda Y (1997) Improvement of charge-discharge cycling efficiency of li by low-temperature precycling of Li. J Electrochem Soc 144(4):L90–L92Google Scholar
  111. 111.
    Wilkinson D, Blom H, Brandt K, Wainwright D (1991) Effects of physical constraints on Li cyclability. J Power Sources 36(4):517–527Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Faculty of Engineering and Industrial ScienceSwinburne University of TechnologyVICAustralia

Personalised recommendations