Journal of Applied Electrochemistry

, Volume 43, Issue 10, pp 995–1003 | Cite as

Porous Co3O4 nanorods as superior electrode material for supercapacitors and rechargeable Li-ion batteries

  • S. Vijayanand
  • R. Kannan
  • H. S. Potdar
  • V. K. Pillai
  • P. A. JoyEmail author
Research Article


Porous aggregated nanorods of Co3O4 with a surface area of ~100 m2 g−1 synthesized without using any templates or surfactants give very high specific capacitance of ~780 F g−1 when used as electrode in a faradaic supercapacitor, with a cycle life of more than 1,000 cycles. Further, in Li-ion batteries when used as an anode, the Co3O4 nanorods achieved a capacity of 1155 mA h g−1 in the first cycle and upon further cycling it is stabilized at 820 mA h g−1 for more than 25 cycles. Detailed characterization indicated the stability of the material and the improved performance is attributed to the shorter Li-insertion/desertion pathways offered by the highly porous nanostructures. The environmentally benign and easily scalable method of synthesis of the porous Co3O4 nanorods coupled with the superior electrode characteristics in supercapacitors and Li-ion batteries provide efficient energy storage capabilities with promising applications.


Cobalt oxide Porous nanostructures Supercapacitor Li-ion battery Electrode materials 



Authors SV and RK are grateful to Council of Scientific and Industrial Research (CSIR), India and University Grants Commission (UGC), India, respectively, for Research Fellowships.


  1. 1.
    Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377CrossRefGoogle Scholar
  2. 2.
    Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62CrossRefGoogle Scholar
  3. 3.
    Nazri G, Pistoia G (2004) Lithium batteries: science and technology. Springer, New YorkGoogle Scholar
  4. 4.
    Kang YM, Song MS, Kim JH, Kim HS, Park MS, Lee JY, Liu H, Dou S (2005) A study on the charge-discharge mechanism of Co3O4 as an anode for the Li ion secondary battery. Electrochim Acta 50:3667–3673CrossRefGoogle Scholar
  5. 5.
    Park MS, Wang GX, Kang YM, Wexler D, Dou SX, Liu HK (2007) Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angew Chem Int Ed 46:750–753CrossRefGoogle Scholar
  6. 6.
    Li W, Cheng F, Tao Z, Chen J (2006) Vapor-transportation preparation and reversible lithium intercalation/deintercalation of α-MoO3 microrods. J Phys Chem B 110:119–124CrossRefGoogle Scholar
  7. 7.
    Yoon SH, Park CW, Yang HJ, Korai Y, Mochida I, Baker RTK, Rodriguez NM (2004) Novel carbon nanofibers of high graphitization as anodic materials for lithium ion secondary batteries. Carbon 42:21–32CrossRefGoogle Scholar
  8. 8.
    Chan CK, Peng HL, Liu G, McIlwrath K, Zhang XF, Huggins RA, Cui Y (2008) High-performance lithium battery anodes using silicon nanowires. Nat Nanotechnol 3:31–35CrossRefGoogle Scholar
  9. 9.
    Gao XP, Bao JL, Pan GL, Zhu HY, Huang PX, Wu F, Song DY (2004) Preparation and electrochemical performance of polycrystalline and single crystalline CuO nanorods as anode materials for Li ion battery. J Phys Chem B 108:5547–5551CrossRefGoogle Scholar
  10. 10.
    Wang Y, Zeng HC, Lee JY (2006) Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Adv Mater 18:645–649CrossRefGoogle Scholar
  11. 11.
    Kim DW, Hwang IS, Kwon SJ, Kang HY, Park KS, Choi YJ, Choi KJ, Park JG (2007) Highly conductive coaxial SnO2–In2O3 heterostructured nanowires for Li ion battery electrodes. Nano Lett 7:3041–3045CrossRefGoogle Scholar
  12. 12.
    Whittingham MS (2004) Lithium batteries and cathode materials. Chem Rev 104:4271–4301CrossRefGoogle Scholar
  13. 13.
    Conway BE (1999) Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer, New YorkCrossRefGoogle Scholar
  14. 14.
    Goodenough JB, Kim Y (2010) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRefGoogle Scholar
  15. 15.
    Guo YG, Hu JS, Wan LJ (2008) Nanostructured materials for electrochemical energy conversion and storage devices. Adv Mater 20:2878–2887CrossRefGoogle Scholar
  16. 16.
    Nam KT, Kim DW, Yoo PJ, Chiang CY, Meethong N, Hammond PT, Chiang YM, Belcher AM (2006) Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 312:885–888CrossRefGoogle Scholar
  17. 17.
    Li Y, Tan B, Wu Y (2008) Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett 8:265–270CrossRefGoogle Scholar
  18. 18.
    Li WY, Xu LN, Chen J (2005) Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv Funct Mater 15:851–857CrossRefGoogle Scholar
  19. 19.
    Lou XW, Deng D, Lee JY, Feng J, Archer LA (2008) Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv Mater 20:258–262CrossRefGoogle Scholar
  20. 20.
    Guo B, Li C, Yuan ZY (2010) Nanostructured Co3O4 materials: synthesis, characterization, and electrochemical behaviors as anode reactants in rechargeable lithium ion batteries. J Phys Chem C 114:12805–12817CrossRefGoogle Scholar
  21. 21.
    Zhan F, Geng B, Guo Y (2009) Porous Co3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries. Chem Eur J 15:6169–6174CrossRefGoogle Scholar
  22. 22.
    Yan N, Hu L, Li Y, Wang Y, Zhong H, Hu X, Kong X, Chen Q (2012) Co3O4 nanocages for high-performance anode material in lithium-ion batteries. J Phys Chem C 116:7227–7235CrossRefGoogle Scholar
  23. 23.
    Li CC, Yin X, Chen L, Li Q, Wang T (2010) Synthesis of cobalt ion-based coordination polymer nanowires and their conversion into porous Co3O4 nanowires with good lithium storage properties. Chem Eur J 16:5215–5221CrossRefGoogle Scholar
  24. 24.
    Xiong S, Chen JS, Lou XW, Zeng HC (2012) Mesoporous Co3O4 and CoO@C topotactically tranformed from chrysanthemum-like Co(CO3)0.5(OH)0.11H2O and their lithium-storage properties. Adv Funct Mater 22:861–871CrossRefGoogle Scholar
  25. 25.
    Zheng J, Cygan P, Jow T (1995) Hydrous ruthenium oxide as an electrode material for electrochemical capacitors. J Electrochem Soc 142:2699–2703CrossRefGoogle Scholar
  26. 26.
    Wang Y, Xia Y (2006) Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim Acta 51:3223–3227CrossRefGoogle Scholar
  27. 27.
    Rajendra Prasad K, Miura N (2004) Electrochemically synthesized MnO2-based mixed oxides for high performance redox supercapacitors. Electrochem Commun 6:1004–1008CrossRefGoogle Scholar
  28. 28.
    Zhao DD, Bao SJ, Zhou WJ, Li HL (2007) Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor. Electrochem Commun 9:869–874CrossRefGoogle Scholar
  29. 29.
    Wei TY, Chen CH, Chang KH, Lu SY, Hu CC (2009) Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem Mater 21:3228–3233CrossRefGoogle Scholar
  30. 30.
    Zhu T, Chen JS, Lou XW (2010) Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors. J Mater Chem 20:7015–7020CrossRefGoogle Scholar
  31. 31.
    Wang G, Liu H, Horvat J, Wang B, Qiao S, Park J, Ahn H (2010) Highly ordered mesoporous cobalt oxide nanostructures: synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. Chem A Eur J 16:11020–11027CrossRefGoogle Scholar
  32. 32.
    Cui L, Li J, Zhang XG (2009) Preparation and properties of Co3O4 nanorods as supercapacitor material. J Appl Electrochem 39:1871–1876CrossRefGoogle Scholar
  33. 33.
    Wang G, Shen X, Horvat J, Wang B, Liu H, Wexler D, Yao J (2009) Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. J Phys Chem C 113:4357–4361CrossRefGoogle Scholar
  34. 34.
    Xiong SL, Yuan CZ, Zhang MF, Xi BJ, Qian YT (2009) Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem Eur J 15:5320–5326Google Scholar
  35. 35.
    Cao L, Lu M, Li HL (2005) Batteries, fuel cells, and energy conversion-preparation of mesoporous nanocrystalline Co3O4 and its applicability of porosity to the formation of electrochemical capacitance. J Electrochem Soc 152:A871–A875CrossRefGoogle Scholar
  36. 36.
    Belous AG, Yanchevskii OZ, Kramarenko AV (2006) Synthesis of nanosize particles of cobalt and nickel oxides from solutions. Russ J Appl Chem 79:345–350CrossRefGoogle Scholar
  37. 37.
    Klissurski DG, Uzunova EL (1990) Synthesis of a high-dispersity copper cobaltite from a coprecipitated hydroxycarbonate. J Mater Sci Lett 9:1255–1258CrossRefGoogle Scholar
  38. 38.
    Penn RL, Banfield JF (1999) Morphology development and crystal growth in nanocrystalline aggregates under hydrothermal conditions: insights from titania. Geochim Cosmochim Acta 63:1549–1557CrossRefGoogle Scholar
  39. 39.
    Lin C, Ritter JA, Popov BN (1998) Characterization of sol gel derived cobalt oxide xerogels as electrochemical capacitors. J Electrochem Soc 145:4097–4103CrossRefGoogle Scholar
  40. 40.
    Patil D, Patil P, Subramanian V, Joy PA, Potdar HS (2010) Highly sensitive and fast responding CO sensor based on Co3O4 nanorods. Talanta 81:37–43CrossRefGoogle Scholar
  41. 41.
    Jena A, Munichandraiah N, Shivashankar SA (2012) Morphology controlled growth of meso-porous Co3O4 nanostructures and study of their electrochemical capacitive behavior. J Electrochem Soc 159:A1682–A1689CrossRefGoogle Scholar
  42. 42.
    Park K-W, Ahn H-J, Sung YE (2002) All-solid-state supercapacitor using a nafion polymer membrane and its hybridization with a direct methanol fuel cell. J Power Sources 109:500–506CrossRefGoogle Scholar
  43. 43.
    Ruffo R, Wessells C, Huggins RA, Cui Y (2009) Electrochemical behavior of LiCoO2 as aqueous lithium-ion battery electrodes. Electrochem Commun 11:247–249CrossRefGoogle Scholar
  44. 44.
    Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T (1985) Reporting physisorption data for gas solid systems with special reference to the determination of surface-area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619CrossRefGoogle Scholar
  45. 45.
    Wang CB, Tang CW, Gau SJ, Chien SH (2005) Effect of the surface area of cobaltic oxide on carbon monoxide oxidation. Catal Lett 101:59–63CrossRefGoogle Scholar
  46. 46.
    Baird T, Campbell KC, Holliman PJ, Hoyle RW, Stirling D, Williams BP, Morris M (1997) Characterisation of cobalt-zinc hydroxycarbonates and their products of decomposition. J Mater Chem 7:319–330CrossRefGoogle Scholar
  47. 47.
    Liu Y, Zhao W, Zhang X (2008) Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors. Electrochim Acta 53:3296–3304CrossRefGoogle Scholar
  48. 48.
    Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407:496–499CrossRefGoogle Scholar
  49. 49.
    Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity lithium-ion-storage material. Science 276:1395–1397CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • S. Vijayanand
    • 1
  • R. Kannan
    • 1
  • H. S. Potdar
    • 1
  • V. K. Pillai
    • 1
  • P. A. Joy
    • 1
    Email author
  1. 1.Physical and Materials Chemistry DivisionCSIR-National Chemical LaboratoryPuneIndia

Personalised recommendations