Advertisement

Journal of Applied Electrochemistry

, Volume 43, Issue 4, pp 399–405 | Cite as

Field emission properties of Cu/multiwalled carbon nanotube composite films fabricated by an electrodeposition technique

  • Susumu Arai
  • Eri Shinada
  • Takashi Saito
Original Paper

Abstract

Composite films of Cu and multiwalled carbon nanotubes (MWCNTs) were fabricated by an electrodeposition technique, and their field emission properties were examined. Commercially available MWCNTs with various diameters (60–150 nm) were used. The microstructure of the composite films was analyzed by scanning electron microscopy and the field emission properties were measured using a diode-type system. Cu/MWCNT composite films with homogeneous dispersion of MWCNTs were fabricated using each type of MWCNT. Bare MWCNTs were present on the surface of the composite films and the ends of the protruding tips were fixed by the deposited copper matrix. The composite films produced clear emission currents and the corresponding Fowler–Nordheim (F–N) plots showed that these were field emission currents. The turn-on electric field tended to decrease with decreasing MWCNT diameter. A light-emitting device incorporating the Cu/MWCNT composite film as a field emitter was fabricated, and its light-emitting properties were investigated. Light emission with a brightness of around 100 cd m−2 was observed for approximately 100 h.

Keywords

Cu Carbon nanotube Composite Electrodeposition Field emission 

Notes

Acknowledgments

This research was supported by a Grant-in-Aid for Scientific Research (C) and the Regional Innovation Cluster Program of Nagano, granted by MEXT, Japan.

References

  1. 1.
    Oberlin A, Endo M, Koyama T (1976) J Cryst Growth 32:335CrossRefGoogle Scholar
  2. 2.
    Iijima S, Ichihashi T (1993) Nature 363:603CrossRefGoogle Scholar
  3. 3.
    Kuzumaki T, Ujiie O, Ichinose H, Ito K (2000) Adv Eng Mater 2:416CrossRefGoogle Scholar
  4. 4.
    He CN, Zhao NQ, Shi CS, Song SZ (2009) J Alloys Compd 487:258CrossRefGoogle Scholar
  5. 5.
    Wenzhong T, Michael HS, Suresh GA (2003) Carbon 412:779Google Scholar
  6. 6.
    Chen W, Tao X, Xue P, Cheng X (2005) Appl Surf Sci 252:1404CrossRefGoogle Scholar
  7. 7.
    Xiong J, Zheng Z, Qin X, Li M, Li H, Wang X (2006) Carbon 44:2701CrossRefGoogle Scholar
  8. 8.
    Arai S, Endo M, Sato T, Koide A (2006) Electrochem Solid-State Lett 9:C131CrossRefGoogle Scholar
  9. 9.
    Cai D, Song M (2008) Carbon 462:107Google Scholar
  10. 10.
    Rinzler AG, Hafner JH, Nikolaev P, Lou L, Kim SG, Tomanek D, Nordlander P, Colbert DT, Smalley RE (1995) Science 269:1550CrossRefGoogle Scholar
  11. 11.
    de Heer WA, Chatelain A, Ugarte D (1995) Science 270:1179CrossRefGoogle Scholar
  12. 12.
    Sohn JI, Lee S (2001) Appl Phys Lett 78:901CrossRefGoogle Scholar
  13. 13.
    Huh Y, Lee JY, Lee CJ (2005) Thin Solid Films 475:267CrossRefGoogle Scholar
  14. 14.
    Siegal MP, Miller PA, Provencio PP, Tallant DR (2007) Diam Relat Mater 161:793Google Scholar
  15. 15.
    Choi WB, Chung DS, Kang JH, Kim HY, Jin YW, Han IT, Lee YH, Jung JE, Lee NS, Park GS, Kim JM (1999) Appl Phys Lett 75:3129CrossRefGoogle Scholar
  16. 16.
    Zhao WJ, Sawada A, Takai M (2002) Jpn J Appl Phys 41:4314CrossRefGoogle Scholar
  17. 17.
    Li J, Lei W, Zhang X, Zhou X, Wang Q, Zhang Y, Wang B (2003) Appl Surf Sci 220:96CrossRefGoogle Scholar
  18. 18.
    Lee HJ, Lee YD, Moon SI, Cho WS, Lee YH, Kim JK, Hwang SW, Ju BK (2006) Carbon 44:2625CrossRefGoogle Scholar
  19. 19.
    Cheng CW, Chen CM, Lee TC (2009) Appl Surf Sci 255:5770CrossRefGoogle Scholar
  20. 20.
    Lee YD, Lee KS, Lee YH, Ju BK (2007) Appl Surf Sci 254:513CrossRefGoogle Scholar
  21. 21.
    Fan YC, Liu YM, Chen YC, Sung T, Ger MD (2009) Appl Surf Sci 255:7753CrossRefGoogle Scholar
  22. 22.
    Huang BR, Lin TC, Yang YK, Tzeng SD (2010) Diam Relat Mater 19:158CrossRefGoogle Scholar
  23. 23.
    Arai S, Saito T, Endo M (2008) Electrochem Solid-State Lett 11:D72CrossRefGoogle Scholar
  24. 24.
    Arai S, Saito T, Endo M (2010) J Electrochem Soc 157:D127CrossRefGoogle Scholar
  25. 25.
    Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Carbon 39:1287CrossRefGoogle Scholar
  26. 26.
    Arai S, Endo M (2003) Electrochem Commun 5:797CrossRefGoogle Scholar
  27. 27.
    Arai S, Endo M, Kaneko N (2004) Carbon 42:641CrossRefGoogle Scholar
  28. 28.
    Arai S, Saito T, Endo M (2010) J Electrochem Soc 157:D147CrossRefGoogle Scholar
  29. 29.
    Fowler RH, Nordheim DL (1928) Roy Soc Proc A119:173CrossRefGoogle Scholar
  30. 30.
    Temple D (1999) Mater Sci Eng R24:185Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Department of Chemistry and Material EngineeringFaculty of Engineering, Shinshu UniversityNagano-shiJapan

Personalised recommendations