Advertisement

Journal of Applied Electrochemistry

, Volume 43, Issue 4, pp 387–397 | Cite as

Activity and active sites of nitrogen-doped carbon nanotubes for oxygen reduction reaction

  • Altansukh Dorjgotov
  • Jinhee Ok
  • YuKwon Jeon
  • Seong-Ho Yoon
  • Yong Gun Shul
Original Paper

Abstract

Nitrogen-doped carbon (CNx) nanotubes were synthesized by thermal decomposition of ferrocene/ethylenediamine mixture at 600–900 °C. The effect of the temperature on the growth and structure of CNx nanotubes was studied by transmission electron microscopy, X-ray photoelectron spectroscopy, and Raman spectroscopy. With increasing growth temperature, the total nitrogen content of CNx nanotubes was decreased from 8.93 to 6.01 at.%. The N configurations were changed from pyrrolic-N to quaternary-N when increasing the temperature. Examination of the catalytic activities of the nanotubes for oxygen reduction reaction by rotating disk electrode measurements and single-cell tests shows that the onset potential for oxygen reduction in 0.5 M H2SO4 of the most effective catalyst (CNx nanotubes synthesized at 900 °C) was 0.83 V versus the normal hydrogen electrode. A current density of 0.07 A cm−2 at 0.6 V was obtained in an H2/O2 proton-exchange membrane fuel cell at a cathode catalyst loading of 2 mg cm−2.

Keywords

Nitrogen-doped carbon nanotubes Thermal decomposition Oxygen reduction reaction Non-precious metal catalysts 

Notes

Acknowledgments

This work was supported by a National Research Foundation of Korea Grant (NRF-2009-C1AAA001-2009-00926) funded by the Korean government (Ministry of Education, Science and Technology) and by Economy and Human Resources Development of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant (No. 20104010100500) funded by the Korean government (Ministry of Knowledge Economy).

References

  1. 1.
    O’Hayre RP, Cha SW, Colella WG, Prinz FB (2008) Fuel cell fundamentals, 2nd edn. Wiley, HobokenGoogle Scholar
  2. 2.
    Wang B (2005) J Power Sources 152:1CrossRefGoogle Scholar
  3. 3.
    Payne TL, Benjamin TG, Garland NL, Kopasz JP (2008) ECS Trans 16:1081CrossRefGoogle Scholar
  4. 4.
    Loukrakpam R, Wanjala BN, Yin J, Fang B, Luo J, Shao M, Protsailo L, Kawamura T, Chen Y, Petkov V, Zhong CJ (2011) ACS Catal 1:562CrossRefGoogle Scholar
  5. 5.
    Lakshmana NR, Kranthi KM, Keerthiga G, Raghuram C (2010) J Appl Electrochem 42:945–951Google Scholar
  6. 6.
    Reeve RW, Christensen PA, Dickinson AJ, Hamnett A, Scott K (2000) Electrochim Acta 45:4237CrossRefGoogle Scholar
  7. 7.
    Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Coord Chem Rev 254:2755CrossRefGoogle Scholar
  8. 8.
    Dong G, Huang M, Guan L (2012) Phys Chem Chem Phys 14:2557CrossRefGoogle Scholar
  9. 9.
    Orellana W (2012) Chem Phys Lett 541:81CrossRefGoogle Scholar
  10. 10.
    Kruusenberg I, Matisen L, Shah Q, Kannan AM, Tammeveski K (2012) Int J Hydrogen Energy 37:4412CrossRefGoogle Scholar
  11. 11.
    Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) Electrochim Acta 53:4937–4951CrossRefGoogle Scholar
  12. 12.
    Feng Y, Alonso-Vante N (2008) Phys Stat Sol B 245:1792–1806CrossRefGoogle Scholar
  13. 13.
    Nallathambi V, Lee J-W, Kumaraguru SP, Wu G, Popov BN (2008) J Power Sources 183:34–42CrossRefGoogle Scholar
  14. 14.
    Liu G, Li X, Ganesan P, Popov BN (2009) Appl Catal B 93:156–165CrossRefGoogle Scholar
  15. 15.
    Lefe`vre M, Dodelet JP, Bertrand P (2000) J Phys Chem B 104:11238–11247CrossRefGoogle Scholar
  16. 16.
    Kundu S, Nagaiah TC, Xia W, Wang Y, Van Dommele S, Bitter JH, Santa M, Grundmeier G, Bron M, Schuhmann W, Muhler M (2009) J Phys Chem C 113:14302–14310CrossRefGoogle Scholar
  17. 17.
    Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2007) J Phys Chem C 111:1444–1450CrossRefGoogle Scholar
  18. 18.
    Yeager E (1984) Electrochim Acta 29:1527–1537CrossRefGoogle Scholar
  19. 19.
    Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2007) J Mol Catal A 264:73–81CrossRefGoogle Scholar
  20. 20.
    Matter PH, Wang E, Arias M, Biddinger EJ, Ozkan US (2006) J Phys Chem B 110:18374–18384CrossRefGoogle Scholar
  21. 21.
    Maldonado S, Morin S, Stevenson KJ (2006) Carbon 44:1429–1437CrossRefGoogle Scholar
  22. 22.
    Liu J, Webster S, Carroll DL (2005) J Phys Chem B 109:15769–15774CrossRefGoogle Scholar
  23. 23.
    Strelko VV, Kuts VS, Thrower PA (2000) Carbon 38:1499–1503CrossRefGoogle Scholar
  24. 24.
    Strelko VV, Kartel NT, Dukhno IN, Kuts VS, Clarkson RB, Odintsov BM (2004) Surf Sci 548:281–290CrossRefGoogle Scholar
  25. 25.
    Lee K, Zhang L, Lui H, Hui R, Shi Z, Zhang J (2009) Electrochim Acta 54:4704–4711CrossRefGoogle Scholar
  26. 26.
    Niwa H, Horiba K, Harada Y, Oshima M, Ikeda T, Terakura K, Ozaki J, Miyata S (2009) J Power Sources 187:93–97CrossRefGoogle Scholar
  27. 27.
    Roy SS, Papakonstantinou P, Okpalugo TIT, Murphy H (2006) J Appl Phys 100:053703–053707CrossRefGoogle Scholar
  28. 28.
    Stanczyk K, Dziembaj R, Piwowars Z, Witkowski S (1995) Carbon 33:1383–1392CrossRefGoogle Scholar
  29. 29.
    Pel JR, Kapteijn F, Moulijn JA, Zhu Q, Thomas KM (1995) Carbon 33:1641–1653CrossRefGoogle Scholar
  30. 30.
    Andrews R, Jacques D, Rao AM, Derbyshire F, Qian D, Fan X, Dickey EC, Chen J (1999) J Chem Phys Lett 303:467–474CrossRefGoogle Scholar
  31. 31.
    Liu J, Czerw R, Carroll DL (2005) J Mater Res 20:538–543CrossRefGoogle Scholar
  32. 32.
    Liang EJ, Ding P, Zhang HR, Guo XY, Du ZL (2004) Diam Relat Mater 13:69–73CrossRefGoogle Scholar
  33. 33.
    Gong K, Chakrabarti S, Dai L (2008) Angew Chem Int Ed 47:5446–5450CrossRefGoogle Scholar
  34. 34.
    Torres J, Perry CC, Bransfield SJ, Fairbrother DH (2003) J Phys Chem B 107:5558–5567CrossRefGoogle Scholar
  35. 35.
    Shao Y, Zhang S, Engelhard MH, Li G, Shao G, Wang Y, Liu J, Aksay IA, Lin Y (2010) J Mater Chem 20:7491–7496CrossRefGoogle Scholar
  36. 36.
    Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki J (2008) J Phys Chem C 112:14706–14709CrossRefGoogle Scholar
  37. 37.
    Muataz AA, Ahmadun F, Guan C, Mahdi E, Rinaldi A (2006) NANO 01:251–257CrossRefGoogle Scholar
  38. 38.
    Chen L, Liu H, Yang K, Wang J, Wang X (2008) J Mater Chem Phys 112:407–411CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Altansukh Dorjgotov
    • 1
  • Jinhee Ok
    • 1
  • YuKwon Jeon
    • 1
  • Seong-Ho Yoon
    • 2
  • Yong Gun Shul
    • 1
  1. 1.Department of Chemical and Biomolecular EngineeringYonsei UniversitySeoulKorea
  2. 2.Institute for Materials Chemistry and EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations