Journal of Applied Electrochemistry

, Volume 43, Issue 2, pp 119–136 | Cite as

PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review

Review Paper

Abstract

The last decade’s research on the performance of proton-exchange membrane direct ethanol fuel cells (PEM-DEFCs) and anion exchange membrane direct ethanol fuel cells (AEM-DEFCs) is included in the present review. Future research challenges are identified along with potential strategies to overcome them. Pt-containing or Pt-free PEM-DEFCs that use acid proton-exchange membranes (typically Nafion type) exhibit relatively low performance (i.e., the state-of-the-art peak power density is 110 mW cm−2 at 145 °C over 4 mg of total Pt loading), while Pt-containing or Pt-free AEM-DEFCs that use low-cost anion-exchange membrane have recently exhibited better performance values (i.e., the state-of-the-art peak power density is about 185 mW cm−2 at 80 °C over Au-modified Pd catalysts supported on carbon nanotubes. The required faster kinetics of the ethanol oxidation and especially for the oxygen reduction reaction seem to be satisfied from one side by the AEM-DEFCs and from the other by PEM-DEFCs only if working at intermediate temperature values (>150 °C). Moreover, new possibilities of using less expensive metal catalysts (as silver, nickel, and palladium) are opening mainly for AEM-DEFCs and the last years for PEM-DEFCs too. Finally, it is worth to be noticed that the best value ever reported (peak power density is 360 mW cm−2 at 60 °C) has been obtained in a very promising alkaline-acid direct ethanol fuel cell (AA-DEFC).

Keywords

PEM-DEFC AEM-DEFC Ethanol electrooxidation Oxygen reduction Pt-based electrodes Pt-free electrodes Pd-based electrodes 

References

  1. 1.
    Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: part II. Engineering, technology development and application aspects. J Power Sources 102(1–2):253–269CrossRefGoogle Scholar
  2. 2.
    Bianchini C, Shen PK (2009) Palladium-based electro-catalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109(9):4183–4206CrossRefGoogle Scholar
  3. 3.
    Rabis A, Rodriguez P, Schmidt TJ (2012) Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catal 2(5):864–890CrossRefGoogle Scholar
  4. 4.
    Brouzgou A, Song S, Tsiakaras P (2012) Low and non-platinum electrocatalysts for PEMFCs: current status, challenges and prospects. J Appl Catal B: Environ 127:371–388Google Scholar
  5. 5.
    Gottesfeld S (2008) Electrocatalysis of oxygen reduction in polymer electrolyte fuel cells: a brief history and a critical examination of present theory and diagnostics. Fuel cell catal. Wiley, New York, pp 1–30Google Scholar
  6. 6.
    Carrette L, Friedrich KA, Stimming U (2001) Fuel cells: fundamentals and applications. Fuel Cells 1(1):5–39CrossRefGoogle Scholar
  7. 7.
    McLean GF, Niet T, Prince-Richard S, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hydrogen Energy 27(5):507–526CrossRefGoogle Scholar
  8. 8.
    Danks TN, Slade RCT, Varcoe JR (2003) Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells. J Mater Chem 13(4):712–721CrossRefGoogle Scholar
  9. 9.
    Varcoe JR, Slade RCT (2005) Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells 5(2):187–200CrossRefGoogle Scholar
  10. 10.
    Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150:27–31CrossRefGoogle Scholar
  11. 11.
    Varcoe JR, Slade RCT, Lam How Yee E (2006) An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. Chem Commun 13:1428–1429CrossRefGoogle Scholar
  12. 12.
    Zhu LD, Zhao TS, Xu JB, Liang ZX (2009) Preparation and characterization of carbon-supported sub-monolayer palladium decorated gold nanoparticles for the electro-oxidation of ethanol in alkaline media. J Power Sources 187(1):80–84CrossRefGoogle Scholar
  13. 13.
    Yu EH, Scott K (2004) Development of direct methanol alkaline fuel cells using anion exchange membranes. J Power Sources 137(2):248–256CrossRefGoogle Scholar
  14. 14.
    Zeng L, Zhao TS, Li YS (2012) Synthesis and characterization of crosslinked poly (vinylΒ alcohol)/layered double hydroxide composite polymer membranes for alkaline direct ethanol fuel cells. Int J Hydrogen Energy 37(23):18425–18432CrossRefGoogle Scholar
  15. 15.
    Matsui K, Tobita E, Sugimoto K, Kondo K, Seita T, Akimoto A (1986) Novel anion exchange membranes having fluorocarbon backbone: preparation and stability. J Appl Polym Sci 32(3):4137–4143CrossRefGoogle Scholar
  16. 16.
    Iwamoto T, Uetake M, Umeda A (1994) Degradation of strong base anion exchange resin. In: Hofman (ed) 68th Autumn annual meeting of the chemical society. Nagoya, JapanGoogle Scholar
  17. 17.
    Kruusenberg I, Matisen L, Shah Q, Kannan AM, Tammeveski K (2012) Non-platinum cathode catalysts for alkaline membrane fuel cells. Int J Hydrogen Energy 37(5):4406–4412CrossRefGoogle Scholar
  18. 18.
    Shen SY, Zhao TS, Wu QX (2012) Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment. Int J Hydrogen Energy 37(1):575–582CrossRefGoogle Scholar
  19. 19.
    Mamlouk M, Scott K, Horsfall JA, Williams C (2011) The effect of electrode parameters on the performance of anion exchange polymer membrane fuel cells. Int J Hydrogen Energy 36(12):7191–7198CrossRefGoogle Scholar
  20. 20.
    Mamlouk M, Horsfall JA, Williams C, Scott K (2012) Radiation grafted membranes for superior anion exchange polymer membrane fuel cells performance. Int J Hydrogen Energy 37(16):11912–11920CrossRefGoogle Scholar
  21. 21.
    Zhao Y, Yu H, Yang D, Li J, Shao Z, Yi B (2013) High-performance alkaline fuel cells using crosslinked composite anion exchange membrane. J Power Sources 221:247–251CrossRefGoogle Scholar
  22. 22.
    Lin B, Qiu L, Lu J, Yan F (2010) Cross-linked alkaline ionic liquid-based polymer electrolytes for alkaline fuel cell applications. Chem Mater 22(24):6718–6725CrossRefGoogle Scholar
  23. 23.
    Bidault F, Brett DJL, Middleton PH, Brandon NP (2009) Review of gas diffusion cathodes for alkaline fuel cells. J Power Sources 187(1):39–48CrossRefGoogle Scholar
  24. 24.
    Scott K, Taama WM, Argyropoulos P, Sundmacher K (1999) The impact of mass transport and methanol crossover on the direct methanol fuel cell. J Power Sources 83(1–2):204–216CrossRefGoogle Scholar
  25. 25.
    Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461(1–2):14–31Google Scholar
  26. 26.
    Nam-Trung Nguyen, Siew Hwa C (2006) Micromachined polymer electrolyte membrane and direct methanol fuel cells: a review. J Micromech Microeng 16(4):R1CrossRefGoogle Scholar
  27. 27.
    Schultz T, Krewer U, Vidaković T, Pfafferodt M, Christov M, Sundmacher K (2007) Systematic analysis of the direct methanol fuel cell. J Appl Electrochem 37(1):111–119CrossRefGoogle Scholar
  28. 28.
    Zhou W, Zhou Z, Song S, Li W, Sun G, Tsiakaras P, Xin Q (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B 46(2):273–285CrossRefGoogle Scholar
  29. 29.
    Zhou WJ, Zhou B, Li WZ, Zhou ZH, Song SQ, Sun GQ, Xin Q, Douvartzides S, Goula M, Tsiakaras P (2004) Performance comparison of low-temperature direct alcohol fuel cells with different anode catalysts. J Power Sources 126(1–2):16–22CrossRefGoogle Scholar
  30. 30.
    Song S, Zhou W, Liang Z, Cai R, Sun G, Xin Q, Stergiopoulos V, Tsiakaras P (2005) The effect of methanol and ethanol cross-over on the performance of PtRu/C-based anode DAFCs. Appl Catal B 55(1):65–72CrossRefGoogle Scholar
  31. 31.
    Antolini E, Colmati F, Gonzalez ER (2007) Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt–Sn alloy catalysts. Electrochem Commun 9(3):398–404CrossRefGoogle Scholar
  32. 32.
    Andreadis GM, Podias AKM, Tsiakaras PE (2008) The effect of the parasitic current on the direct ethanol PEM fuel cell operation. J Power Sources 181(2):214–227CrossRefGoogle Scholar
  33. 33.
    Andreadis GM, Podias AKM, Tsiakaras PE (2009) A model-based parametric analysis of a direct ethanol polymer electrolyte membrane fuel cell performance. J Power Sources 194(1):397–407CrossRefGoogle Scholar
  34. 34.
    Li YS, Zhao TS, Liang ZX (2009) Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J Power Sources 187(2):387–392CrossRefGoogle Scholar
  35. 35.
    Maab H, Nunes SP (2010) Modified SPEEK membranes for direct ethanol fuel cell. J Power Sources 195(13):4036–4042CrossRefGoogle Scholar
  36. 36.
    Jablonski A, Kulesza PJ, Lewera A (2011) Oxygen permeation through Nafion 117 membrane and its impact on efficiency of polymer membrane ethanol fuel cell. J Power Sources 196(10):4714–4718CrossRefGoogle Scholar
  37. 37.
    Song S, He C, Liu J, Wang Y, Brouzgou A, Tsiakaras P (2012) Two-step sequence for synthesis of efficient PtSn@Rh/C catalyst for oxidizing ethanol and intermediate products. Appl Catal B 119–120:227–233Google Scholar
  38. 38.
    Meyer M, Melke J, Gerteisen D (2011) Modelling and simulation of a direct ethanol fuel cell considering multistep electrochemical reactions, transport processes and mixed potentials. Electrochim Acta 56(11):4299–4307CrossRefGoogle Scholar
  39. 39.
    Zhiani M, Gasteiger HA, Piana M, Catanorchi S (2011) Comparative study between platinum supported on carbon and non-noble metal cathode catalyst in alkaline direct ethanol fuel cell (ADEFC). Int J Hydrogen Energy 36(8):5110–5116CrossRefGoogle Scholar
  40. 40.
    Li YS, Zhao TS (2012) Understanding the performance degradation of anion-exchange membrane direct ethanol fuel cells. Int J Hydrogen Energy 37(5):4413–4421CrossRefGoogle Scholar
  41. 41.
    Song SQ, Zhou WJ, Zhou ZH, Jiang LH, Sun GQ, Xin Q, Leontidis V, Kontou S, Tsiakaras P (2005) Direct ethanol PEM fuel cells: the case of platinum based anodes. Int J Hydrogen Energy 30(9):995–1001CrossRefGoogle Scholar
  42. 42.
    De Souza RFB, Silva JCM, Simões FC, Calegaro ML, Neto AO, Santos MC (2012) New approaches for the ethanol oxidation reaction of Pt/C on carbon cloth using ATR–FTIR. Int J Electrochem Sci 7:5356–5366Google Scholar
  43. 43.
    Andreadis G, Tsiakaras P (2006) Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation. Chem Eng Sci 61(22):7497–7508CrossRefGoogle Scholar
  44. 44.
    Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170(1):1–12CrossRefGoogle Scholar
  45. 45.
    Song S, Tsiakaras P (2006) Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Appl Catal B 63(3–4):187–193Google Scholar
  46. 46.
    Wang H, Jusys Z, Behm RJ (2004) Ethanol electrooxidation on a carbon-supported Pt catalyst: reaction kinetics and product yields. J Phys Chem B 108(50):19413–19424CrossRefGoogle Scholar
  47. 47.
    Antolini E, Gonzalez ER (2010) A simple model to assess the contribution of alloyed and non-alloyed platinum and tin to the ethanol oxidation reaction on Pt–Sn/C catalysts: application to direct ethanol fuel cell performance. Electrochim Acta 55(22):6485–6490CrossRefGoogle Scholar
  48. 48.
    Lamy C, Belgsir EM, Léger JM (2001) Electrocatalytic oxidation of aliphatic alcohols: application to the direct alcohol fuel cell (DAFC). J Appl Electrochem 31(7):799–809CrossRefGoogle Scholar
  49. 49.
    Andreadis G, Stergiopoulos V, Song S, Tsiakaras P (2010) Direct ethanol fuel cells: the effect of the cell discharge current on the products distribution. Appl Catal B 100(1–2):157–164Google Scholar
  50. 50.
    Nakagawa N, Kaneda Y, Wagatsuma M, Tsujiguchi T (2012) Product distribution and the reaction kinetics at the anode of direct ethanol fuel cell with Pt/C, PtRu/C and PtRuRh/C. J Power Sources 199:103–109CrossRefGoogle Scholar
  51. 51.
    James DD, Pickup PG (2010) Effects of crossover on product yields measured for direct ethanol fuel cells. Electrochim Acta 55(11):3824–3829CrossRefGoogle Scholar
  52. 52.
    Wang Q, Sun GQ, Jiang LH, Xin Q, Sun SG, Jiang YX, Chen SP, Jusys Z, Behm RJ (2007) Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: in situ FTIR spectroscopy and on-line DEMS studies. Phys Chem Chem Phys 9(21):2686–2696CrossRefGoogle Scholar
  53. 53.
    Li M, Kowal A, Sasaki K, Marinkovic N, Su D, Korach E, Liu P, Adzic RR (2010) Ethanol oxidation on the ternary Pt–Rh–SnO2/C electrocatalysts with varied Pt:rh:sn ratios. Electrochim Acta 55(14):4331–4338CrossRefGoogle Scholar
  54. 54.
    Bergamaski K, Gonzalez ER, Nart FC (2008) Ethanol oxidation on carbon supported platinum–rhodium bimetallic catalysts. Electrochim Acta 53(13):4396–4406CrossRefGoogle Scholar
  55. 55.
    Kowal A, Li M, Shao M, Sasaki K, Vukmirovic MB, Zhang J, Marinkovic NS, Liu P, Frenkel AI, Adzic RR (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8(4):325–330CrossRefGoogle Scholar
  56. 56.
    Tarasevich MR, Karichev ZR, Bogdanovskaya VA, Lubnin EN, Kapustin AV (2005) Kinetics of ethanol electrooxidation at RuNi catalysts. Electrochem Commun 7(2):141–146CrossRefGoogle Scholar
  57. 57.
    Fang X, Wang L, Shen PK, Cui G, Bianchini C (2010) An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution. J Power Sources 195(5):1375–1378CrossRefGoogle Scholar
  58. 58.
    Cui G, Song S, Shen PK, Kowal A, Bianchini C (2009) First-principles considerations on catalytic activity of Pd toward ethanol oxidation. J Phys Chem C 113(35):15639–15642CrossRefGoogle Scholar
  59. 59.
    Lim D-H, Choi D-H, Lee W-D, Lee H-I (2009) A new synthesis of a highly dispersed and CO tolerant Pt–Sn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability. Appl Catal B 89(3–4):484–493Google Scholar
  60. 60.
    Hsieh C-T, Liu Y-Y, Chen W-Y, Hsieh Y-H (2011) Electrochemical activity and durability of Pt–Sn alloys on carbon-based electrodes prepared by microwave-assisted synthesis. Int J Hydrogen Energy 36(24):15766–15774CrossRefGoogle Scholar
  61. 61.
    Su BJ, Wang KW, Cheng TC, Tseng CJ (2012) Preparation of PtSn/C electrocatalysts with improved activity and durability toward oxygen reduction reaction by alcohol-reduction process. Mater Chem Phys 135(2–3):395–400. doi:10.1016/j.matchemphys.2012.04.065 CrossRefGoogle Scholar
  62. 62.
    Wan C-H, Chen C-L (2009) Mitigating ethanol crossover in DEFC: a composite anode with a thin layer of Pt50–Sn50 nanoparticles directly deposited into NafionΒ® membrane surface. Int J Hydrogen Energy 34(23):9515–9522CrossRefGoogle Scholar
  63. 63.
    Li YS, Zhao TS, Yang WW (2010) Measurements of water uptake and transport properties in anion-exchange membranes. Int J Hydrogen Energy 35(11):5656–5665CrossRefGoogle Scholar
  64. 64.
    Jablonski A, Lewera A (2012) Electrocatalytic oxidation of ethanol on Pt, Pt–Ru and Pt–Sn nanoparticles in polymer electrolyte membrane fuel cell: role of oxygen permeation. Appl Catal B 115–116:25–30Google Scholar
  65. 65.
    Antolini E, Gonzalez ER (2011) Effect of synthesis method and structural characteristics of Pt–Sn fuel cell catalysts on the electro-oxidation of CH3OH and CH3CH2OH in acid medium. Catal Today 160(1):28–38CrossRefGoogle Scholar
  66. 66.
    Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195(11):3431–3450CrossRefGoogle Scholar
  67. 67.
    Yu EH, Krewer U, Scott K (2010) Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 3:1499–1528CrossRefGoogle Scholar
  68. 68.
    Zhao TS, Li YS, Shen SY (2010) Anion-exchange membrane direct ethanol fuel cells: status and perspective. Front Energy Power Eng Chin 4(4):443–458CrossRefGoogle Scholar
  69. 69.
    Arges CG, Parrondo J, Johnson G, Nadhan A, Ramani V (2012) Assessing the influence of different cation chemistries on ionic conductivity and alkaline stability of anion exchange membranes. J Mater Chem 22(9):3733–3744CrossRefGoogle Scholar
  70. 70.
    Energy USDo. http://www1.eere.energy.gov/hydrogenandfuelcells/. Accessed 13 June 2012
  71. 71.
    U.S. Department of Energy EERE. Accessed 21 May 2012Google Scholar
  72. 72.
    InfoMine MaIT (1990–2012). http://www.infomine.com/
  73. 73.
    Mamlouk M, Wang X, Scott K, Horsfall JA, Williams C (2011) Characterization and application of anion exchange polymer membranes with non-platinum group metals for fuel cells. 225. doi:10.1177/2041296710394264
  74. 74.
    Gurau B, Smotkin ES (2002) Methanol crossover in direct methanol fuel cells: a link between power and energy density. J Power Sources 112(2):339–352CrossRefGoogle Scholar
  75. 75.
    Mahapatra SS, Dutta A, Datta J (2010) Temperature effect on the electrode kinetics of ethanol oxidation on Pd modified Pt electrodes and the estimation of intermediates formed in alkali medium. Electrochim Acta 55(28):9097–9104CrossRefGoogle Scholar
  76. 76.
    Wang Y, Li L, Hu L, Zhuang L, Lu J, Xu B (2003) A feasibility analysis for alkaline membrane direct methanol fuel cell: thermodynamic disadvantages versus kinetic advantages. Electrochem Commun 5(8):662–666CrossRefGoogle Scholar
  77. 77.
    Aricò AS, Baglio V, Antonucci V (2009) Direct methanol fuel cells—history, status and perspectives. In: Electrocatalysis of direct methanol fuel cells. Wiley, New York, p 1–78Google Scholar
  78. 78.
    Li H, Sun G, Cao L, Jiang L, Xin Q (2007) Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochim Acta 52(24):6622–6629CrossRefGoogle Scholar
  79. 79.
    Liu J, Ye J, Xu C, Jiang SP, Tong Y (2007) Kinetics of ethanol electrooxidation at Pd electrodeposited on Ti. Electrochem Commun 9(9):2334–2339CrossRefGoogle Scholar
  80. 80.
    Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J Electroanal Chem 563(1):81–89CrossRefGoogle Scholar
  81. 81.
    Silva JCM, De Souza RFB, Parreira LS, Neto ET, Calegaro ML, Santos MC (2010) Ethanol oxidation reactions using SnO2@Pt/C as an electrocatalyst. Appl Catal B 99(1–2):265–271Google Scholar
  82. 82.
    Chang Y-W, Liu C-W, Wei Y-C, Wang K-W (2009) Promotion of PtRu/C anode catalysts for ethanol oxidation reaction by addition of Sn modifier. Electrochem Commun 11(11):2161–2164CrossRefGoogle Scholar
  83. 83.
    Zhou W-P, Axnanda S, White MG, Adzic RR, Hrbek J (2011) Enhancement in Ethanol Electrooxidation by SnOx Nanoislands Grown on Pt(111): effect of metal oxide–metal interface sites. J Phys Chem C 115(33):16467–16473CrossRefGoogle Scholar
  84. 84.
    Liu C-W, Chang Y-W, Wei Y-C, Wang K-W (2011) The effect of oxygen containing species on the catalytic activity of ethanol oxidation for PtRuSn/C catalysts. Electrochim Acta 56(5):2574–2581CrossRefGoogle Scholar
  85. 85.
    Tremiliosi-Filho G, Gonzalez ER, Motheo AJ, Belgsir EM, Léger JM, Lamy C (1998) Electro-oxidation of ethanol on gold: analysis of the reaction products and mechanism. J Electroanal Chem 444(1):31–39CrossRefGoogle Scholar
  86. 86.
    de Lima R, Varela H (2008) Catalytic oxidation of ethanol on gold electrode in alkaline media. Gold Bull 41(1):15–22CrossRefGoogle Scholar
  87. 87.
    Liang ZX, Zhao TS, Xu JB, Zhu LD (2009) Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta 54(8):2203–2208CrossRefGoogle Scholar
  88. 88.
    Nguyen ST, Law HM, Nguyen HT, Kristian N, Wang S, Chan SH, Wang X (2009) Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Appl Catal B 91(1–2):507–515Google Scholar
  89. 89.
    Fujiwara N, Siroma Z, Yamazaki S-i, Ioroi T, Senoh H, Yasuda K (2008) Direct ethanol fuel cells using an anion exchange membrane. J Power Sources 185(2):621–626CrossRefGoogle Scholar
  90. 90.
    Bianchini C, Bambagioni V, Filippi J, Marchionni A, Vizza F, Bert P, Tampucci A (2009) Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells. Electrochem Commun 11(5):1077–1080CrossRefGoogle Scholar
  91. 91.
    Hu F, Chen C, Wang Z, Wei G, Shen PK (2006) Mechanistic study of ethanol oxidation on Pd–NiO/C electrocatalyst. Electrochim Acta 52(3):1087–1091CrossRefGoogle Scholar
  92. 92.
    Damjanovic A, Genshaw MA, Bockris JOM (1967) The mechanism of oxygen reduction at platinum in alkaline solutions with special reference to H2O2. 114. doi:10.1149/1.2426425
  93. 93.
    Damjanovic A, Sepa DB, Vojnovic MV (1979) New evidence supports the proposed mechanism for O2 reduction at oxide free platinum electrodes. Electrochim Acta 24(8):887–889CrossRefGoogle Scholar
  94. 94.
    Morozan A, Jousselme B, Palacin S (2011) Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ Sci 4(4):1238–1254CrossRefGoogle Scholar
  95. 95.
    Simões F, Olivi P (2010) Oxygen Reduction Reaction on Pt–NiOx/C, Pt–CoOx/C and PtSnO2 electrodes in the presence of ethanol. Electrocatalysis 1(2):163–168CrossRefGoogle Scholar
  96. 96.
    Morales-Acosta D, Lopez de la Fuente D, Arriaga LG, Vargas Guitierrez G, Rodriguez Varela FJ (2011) Electrochemical investigation of Pt–Co/MWCNT as an alcohol-tolerant ORR catalyst for direct oxidation fuel cells. Int J Electrochem Sci 6:1835–1854Google Scholar
  97. 97.
    Rodriguez Varela FJ, Gaona Coronado AA, Loyola JC, Jiang Q-Z, Bartolo Perez P (2011) Pt–CeOx/MWCNT electrocatalysts as ethanol-tolerant ORR catalysts for direct oxidation fuel cells. J New Mater Electrochem Syst 14(2):75–80Google Scholar
  98. 98.
    Rodriguez Varela FJ, Gonzalez Ramirez SE, Klapco RD (2009) Evaluation of the performance of Ru/C electrocatalysts for the ORR in the absence and presence of C2H5OH: application in direct fuel cells. J New Mat Electr Sys 12(1):9–15Google Scholar
  99. 99.
    Rao CV, Viswanathan B (2010) Carbon supported Pd–Co–Mo alloy as an alternative to Pt for oxygen reduction in direct ethanol fuel cells. Electrochim Acta 55(8):3002–3007CrossRefGoogle Scholar
  100. 100.
    Savadogo O, Rodriguez Varela FJ (2009) Palladium-alloy catalysts as ethanol-tolerant cathodes for direct alcohol fuel cell applications. J New Mater Electrochem Syst 11(2):69–74Google Scholar
  101. 101.
    Nekooi P, Akbari M, Amini MK (2010) CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst. Int J Hydrogen Energy 35(12):6392–6398CrossRefGoogle Scholar
  102. 102.
    Song S, Wang Y, Tsiakaras P, Shen PK (2008) Direct alcohol fuel cells: a novel non-platinum and alcohol inert ORR electrocatalyst. Appl Catal B 78(3–4):381–387Google Scholar
  103. 103.
    Shen S, Zhao TS, Xu J, Li Y (2011) High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells. Energy Environ Sci 4(4):1428–1433CrossRefGoogle Scholar
  104. 104.
    Xu JB, Zhao TS, Shen SY, Li YS (2010) Stabilization of the palladium electrocatalyst with alloyed gold for ethanol oxidation. Int J Hydrogen Energy 35(13):6490–6500CrossRefGoogle Scholar
  105. 105.
    Shen SY, Zhao TS, Xu JB, Li YS (2010) Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources 195(4):1001–1006CrossRefGoogle Scholar
  106. 106.
    Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt–Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J Power Sources 190(2):241–251CrossRefGoogle Scholar
  107. 107.
    Xu JB, Zhao TS, Li YS, Yang WW (2010) Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells. Int J Hydrogen Energy 35(18):9693–9700CrossRefGoogle Scholar
  108. 108.
    Stamenković V, Schmidt TJ, Ross PN, Marković NM (2003) Surface segregation effects in electrocatalysis: kinetics of oxygen reduction reaction on polycrystalline Pt3Ni alloy surfaces. J Electroanal Chem 554–555:191–199Google Scholar
  109. 109.
    Guo J, Hsu A, Chu D, Chen R (2010) Improving oxygen reduction reaction activities on carbon-supported Ag nanoparticles in alkaline solutions. J Phys Chem C 114(10):4324–4330CrossRefGoogle Scholar
  110. 110.
    Lima FHB, Calegaro ML, Ticianelli EA (2006) Investigations of the catalytic properties of manganese oxides for the oxygen reduction reaction in alkaline media. J Electroanal Chem 590(2):152–160CrossRefGoogle Scholar
  111. 111.
    Xie X-Y, Ma Z-F, Ma X-X, Ren Q, Schmidt VM, Huang L (2007) Preparation and electrochemical characteristics of MnOx–CoTMPP/BP composite catalyst for oxygen reduction reaction in alkaline solution. 154. doi:10.1149/1.2739906
  112. 112.
    Roche I, Chaînet E, Chatenet M, Vondrák J (2008) Durability of carbon-supported manganese oxide nanoparticles for the oxygen reduction reaction (ORR) in alkaline medium. J Appl Electrochem 38(9):1195–1201CrossRefGoogle Scholar
  113. 113.
    Mao L, Sotomura T, Nakatsu K, Koshiba N, Zhang D, Ohsaka T (2002) Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution. 149. doi:10.1149/1.1461378
  114. 114.
    Lima FHB, de Castro JFR, Ticianelli EA (2006) Silver-cobalt bimetallic particles for oxygen reduction in alkaline media. J Power Sources 161(2):806–812CrossRefGoogle Scholar
  115. 115.
    Duong HT, Rigsby MA, Zhou W-P, Wieckowski A (2007) Oxygen reduction catalysis of the Pt3Co alloy in alkaline and acidic media studied by X-ray photoelectron spectroscopy and electrochemical methods. J Phys Chem C 111(36):13460–13465CrossRefGoogle Scholar
  116. 116.
    Sugawara M, Ohno M, Matsuki K (1997) Oxygen reduction catalysis of Mn–Co spinel oxides on a graphite electrode in alkaline solution. J Mater Chem 7(5):833–836CrossRefGoogle Scholar
  117. 117.
    Cheng F, Su Y, Liang J, Tao Z, Chen J (2009) MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media. Chem Mater 22(3):898–905CrossRefGoogle Scholar
  118. 118.
    Roche I, Chaînet E, Chatenet M, Vondrák J (2006) Carbon-supported manganese oxide nanoparticles as electrocatalysts for the oxygen reduction reaction (ORR) in alkaline medium: physical characterizations and ORR mechanism. J Phys Chem C 111(3):1434–1443CrossRefGoogle Scholar
  119. 119.
    Li B, Prakash J (2009) Oxygen reduction reaction on carbon supported Palladium–Nickel alloys in alkaline media. Electrochem Commun 11(6):1162–1165CrossRefGoogle Scholar
  120. 120.
    Li H, Liu H, Jong Z, Qu W, Geng D, Sun X, Wang H (2011) Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media. Int J Hydrogen Energy 36(3):2258–2265CrossRefGoogle Scholar
  121. 121.
    Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3):1321–1326CrossRefGoogle Scholar
  122. 122.
    Oliveira MC, Rego R, Fernandes LS, Tavares PB (2011) Evaluation of the catalytic activity of Pd–Ag alloys on ethanol oxidation and oxygen reduction reactions in alkaline medium. J Power Sources 196(15):6092–6098CrossRefGoogle Scholar
  123. 123.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B 56(1–2):9–35Google Scholar
  124. 124.
    Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O2 Reduction: pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108(30):10955–10964CrossRefGoogle Scholar
  125. 125.
    Aricò AS, Cretì P, Antonucci PL, Antonucci V (1998) Comparison of ethanol and methanol oxidation in a liquid: feed solid polymer electrolyte fuel cell at high temperature. 1. doi:10.1149/1.1390638
  126. 126.
    Wang J, Wasmus S, Savinell RF (1995) Evaluation of ethanol, 1-propanol, and 2-propanol in a direct oxidation polymer-electrolyte fuel cell: a real-time mass spectrometry study. 142. doi:10.1149/1.2048487
  127. 127.
    Lobato J, Cañizares P, Rodrigo MA, Linares JJ (2009) Testing a vapour-fed PBI-based direct ethanol fuel cell. Fuel Cells 9(5):597–604CrossRefGoogle Scholar
  128. 128.
    Wang Q, Sun GQ, Cao L, Jiang LH, Wang GX, Wang SL, Yang SH, Xin Q (2008) High performance direct ethanol fuel cell with double-layered anode catalyst layer. J Power Sources 177(1):142–147CrossRefGoogle Scholar
  129. 129.
    Jiang L, Sun G, Sun S, Liu J, Tang S, Li H, Zhou B, Xin Q (2005) Structure and chemical composition of supported Pt–Sn electrocatalysts for ethanol oxidation. Electrochim Acta 50(27):5384–5389CrossRefGoogle Scholar
  130. 130.
    An L, Zhao TS (2011) Performance of an alkaline-acid direct ethanol fuel cell. Int J Hydrogen Energy 36(16):9994–9999CrossRefGoogle Scholar
  131. 131.
    Fatih K, Neburchilov V, Alzate V, Neagu R, Wang H (2010) Synthesis and characterization of quaternary PtRuIrSn/C electrocatalysts for direct ethanol fuel cells. J Power Sources 195(21):7168–7175CrossRefGoogle Scholar
  132. 132.
    Verma A, Basu S (2007) Direct alkaline fuel cell for multiple liquid fuels: anode electrode studies. J Power Sources 174(1):180–185CrossRefGoogle Scholar
  133. 133.
    Zhu M, Sun G, Li H, Cao L, Xin Q (2008) Effect of the Sn(II)/Sn(IV) redox couple on the activity of PtSn/C for ethanol electro-oxidation. Chin J Catal 29(8):765–770CrossRefGoogle Scholar
  134. 134.
    Purgato FLS, Pronier S, Olivi P, de Andrade AR, Léger JM, Tremiliosi-Filho G, Kokoh KB (2012) Direct ethanol fuel cell: electrochemical performance at 90 °C on Pt and PtSn/C electrocatalysts. J Power Sources 198:95–99CrossRefGoogle Scholar
  135. 135.
    Simões FC, dos Anjos DM, Vigier F, Léger JM, Hahn F, Coutanceau C, Gonzalez ER, Tremiliosi-Filho G, de Andrade AR, Olivi P, Kokoh KB (2007) Electroactivity of tin modified platinum electrodes for ethanol electrooxidation. J Power Sources 167(1):1–10CrossRefGoogle Scholar
  136. 136.
    Tsiakaras PE (2007) PtM/C (M = Sn, Ru, Pd, W) based anode direct ethanol–PEMFCs: structural characteristics and cell performance. J Power Sources 171(1):107–112CrossRefGoogle Scholar
  137. 137.
    Tayal J, Rawat B, Basu S (2011) Bi-metallic and tri-metallic Pt–Sn/C, Pt–Ir/C, Pt–Ir–Sn/C catalysts for electro-oxidation of ethanol in direct ethanol fuel cell. Int J Hydrogen Energy 36(22):14884–14897CrossRefGoogle Scholar
  138. 138.
    Perez J, Paganin VA, Antolini E (2011) Particle size effect for ethanol electro-oxidation on Pt/C catalysts in half-cell and in a single direct ethanol fuel cell. J Electroanal Chem 654(1–2):108–115Google Scholar
  139. 139.
    Liu Z, Ling XY, Su X, Lee JY, Gan LM (2005) Preparation and characterization of Pt/C and PtRu/C electrocatalysts for direct ethanol fuel cells. J Power Sources 149:1–7CrossRefGoogle Scholar
  140. 140.
    Xue X, Ge J, Tian T, Liu C, Xing W, Lu T (2007) Enhancement of the electrooxidation of ethanol on Pt–Sn–P/C catalysts prepared by chemical deposition process. J Power Sources 172(2):560–569CrossRefGoogle Scholar
  141. 141.
    Zhu M, Sun G, Xin Q (2009) Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation. Electrochim Acta 54(5):1511–1518CrossRefGoogle Scholar
  142. 142.
    De Souza RFB, Parreira LS, Rascio DC, Silva JCM, Teixeira-Neto E, Calegaro ML, Spinace EV, Neto AO, Santos MC (2010) Study of ethanol electro-oxidation in acid environment on Pt3Sn/C anode catalysts prepared by a modified polymeric precursor method under controlled synthesis conditions. J Power Sources 195(6):1589–1593CrossRefGoogle Scholar
  143. 143.
    Neto AO, Farias LA, Dias RR, Brandalise M, Linardi M, Spinacé EV (2008) Enhanced electro-oxidation of ethanol using PtSn/CeO2/C electrocatalyst prepared by an alcohol-reduction process. Electrochem Commun 10(9):1315–1317CrossRefGoogle Scholar
  144. 144.
    Silva DF, Geraldes AN, Neto AO, Pino ES, Linardi M, Spinacé EV, Macedo WAA, Ardisson JD (2010) Preparation of PtSnO2/C electrocatalysts using electron beam irradiation. Mater Sci Eng B 175(3):261–265CrossRefGoogle Scholar
  145. 145.
    De Souza RFB, Parreira LS, Silva JCM, Simões FC, Calegaro ML, Giz MJ, Camara GA, Neto AO, Santos MC (2011) PtSnCe/C electrocatalysts for ethanol oxidation: dEFC and FTIR ‘‘in-situ’’ studies. Int J Hydrogen Energy 36(18):11519–11527CrossRefGoogle Scholar
  146. 146.
    Lee E, Murthy A, Manthiram A (2011) Effect of Mo addition on the electrocatalytic activity of Pt–Sn–Mo/C for direct ethanol fuel cells. Electrochim Acta 56(3):1611–1618CrossRefGoogle Scholar
  147. 147.
    Ribeiro J, dos Anjos DM, Kokoh KB, Coutanceau C, Léger JM, Olivi P, de Andrade AR, Tremiliosi-Filho G (2007) Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell. Electrochim Acta 52(24):6997–7006CrossRefGoogle Scholar
  148. 148.
    Zignani SC, Baglio V, Linares JJ, Monforte G, Gonzalez ER, Aricò AS (2012) Performance and selectivity of PtxSn/C electro-catalysts for ethanol oxidation prepared by reduction with different formic acid concentrations. Electrochim Acta 70:255–265CrossRefGoogle Scholar
  149. 149.
    Ribadeneira E, Hoyos BA (2008) Evaluation of Pt–Ru–Ni and Pt–Sn–Ni catalysts as anodes in direct ethanol fuel cells. J Power Sources 180(1):238–242CrossRefGoogle Scholar
  150. 150.
    Lycke DR, Gyenge EdL (2007) Electrochemically assisted organosol method for Pt–Sn nanoparticle synthesis and in situ deposition on graphite felt support: extended reaction zone anodes for direct ethanol fuel cells. Electrochim Acta 52(13):4287–4298CrossRefGoogle Scholar
  151. 151.
    Tayal J, Rawat B, Basu S (2012) Effect of addition of rhenium to Pt-based anode catalysts in electro-oxidation of ethanol in direct ethanol PEM fuel cell. Int J Hydrogen Energy 37(5):4597–4605CrossRefGoogle Scholar
  152. 152.
    Datta J, Dutta A, Biswas M (2012) Enhancement of functional properties of PtPd nano catalyst in metal-polymer composite matrix: application in direct ethanol fuel cell. Electrochem Commun 20:56–59CrossRefGoogle Scholar
  153. 153.
    Bartrom AM, Haan JL (2012) The direct formate fuel cell with an alkaline anion exchange membrane. J Power Sources 214:68–74CrossRefGoogle Scholar
  154. 154.
    An L, Zhao TS, Xu JB (2011) A bi-functional cathode structure for alkaline-acid direct ethanol fuel cells. Int J Hydrogen Energy 36(20):13089–13095CrossRefGoogle Scholar
  155. 155.
    An L, Zhao TS, Chen R, Wu QX (2011) A novel direct ethanol fuel cell with high power density. J Power Sources 196(15):6219–6222CrossRefGoogle Scholar
  156. 156.
    Hao L, Deli K, Hui W, Rongfang W (2011) Carbon-supported Pt–RuCo nanoparticles with low-noble-metal content and superior catalysis for ethanol oxidization. Int J Electrochem Soc 6:1058–1065Google Scholar
  157. 157.
    Yang X, Zheng J, Zhen M, Meng X, Jiang F, Wang T, Shu C, Jiang L, Wang C (2012) A linear molecule functionalized multi-walled carbon nanotubes with well dispersed PtRu nanoparticles for ethanol electro-oxidation. Appl Catal B Environ 121–122:57–64CrossRefGoogle Scholar
  158. 158.
    Zhang H, Hu C, He X, Hong L, Du G, Zhang Y (2011) Pt support of multidimensional active sites and radial channels formed by SnO2 flower-like crystals for methanol and ethanol oxidation. J Power Sources 196(10):4499–4505CrossRefGoogle Scholar
  159. 159.
    Xiao P, Guo X, Guo D-J, Song H-Q, Sun J, Lv Z, Liu Y, Qiu X-P, Zhu W-T, Chen L-Q, Stimming U (2011) Study on the co-catalytic effect of titanium dioxide and titanate nanomaterials on platinum-based catalysts in direct alcohol fuel cells. Electrochim Acta 58:541–550CrossRefGoogle Scholar
  160. 160.
    Sieben JM, Duarte MME (2011) Nanostructured Pt and Pt–Sn catalysts supported on oxidized carbon nanotubes for ethanol and ethylene glycol electro-oxidation. Int J Hydrogen Energy 36(5):3313–3321CrossRefGoogle Scholar
  161. 161.
    Ma J, Sun H, Su F, Chen Y, Tang Y, Lu T, Zheng J (2011) Ethanol electrooxidation on carbon-supported Pt nanoparticles catalyst prepared using complexing self-reduction method. Int J Hydrogen Energy 36(12):7265–7274CrossRefGoogle Scholar
  162. 162.
    Liu B, Chia Z-W, Lee Z-Y, Cheng C-H, Lee J-Y, Liu Z-L (2012) The importance of water in the polyol synthesis of carbon supported platinum-tin oxide catalysts for ethanol electrooxidation. J Power Sources 206:97–102CrossRefGoogle Scholar
  163. 163.
    Du W, Su D, Wang Q, Frenkel AI, Teng X (2011) Promotional effects of bismuth on the formation of platinum-bismuth nanowires network and the electrocatalytic activity toward ethanol oxidation. Cryst Growth Des 11(2):594–599CrossRefGoogle Scholar
  164. 164.
    Tusi MM, Polanco NSO, Da Silva SG, Spinacé EV, Neto AO (2011) The high activity of PtBi/C electrocatalysts for ethanol electro-oxidation in alkaline medium. Electrochem Commun 13(2):143–146CrossRefGoogle Scholar
  165. 165.
    Wang X, Hu C, Xiong Y, Liu H, Du G, He X (2011) Carbon-nanosphere-supported Pt nanoparticles for methanol and ethanol electro-oxidation in alkaline media. J Power Sources 196(4):1904–1908CrossRefGoogle Scholar
  166. 166.
    Dutta A, Mahapatra SS, Datta J (2011) High performance PtPdAu nano-catalyst for ethanol oxidation in alkaline media for fuel cell applications. Int J Hydrogen Energy 36(22):14898–14906CrossRefGoogle Scholar
  167. 167.
    Shen SY, Zhao TS, Xu JB (2010) Carbon supported PtRh catalysts for ethanol oxidation in alkaline direct ethanol fuel cell. Int J Hydrogen Energy 35(23):12911–12917CrossRefGoogle Scholar
  168. 168.
    Xu C, Shen Pk, Liu Y (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164(2):527–531CrossRefGoogle Scholar
  169. 169.
    Xu C, Su Y, Tan L, Liu Z, Zhang J, Chen S, Jiang SP (2009) Electrodeposited PtCo and PtMn electrocatalysts for methanol and ethanol electrooxidation of direct alcohol fuel cells. Electrochim Acta 54(26):6322–6326CrossRefGoogle Scholar
  170. 170.
    Xu C, Cheng L, Shen P, Liu Y (2007) Methanol and ethanol electrooxidation on Pt and Pd supported on carbon microspheres in alkaline media. Electrochem Commun 9(5):997–1001CrossRefGoogle Scholar
  171. 171.
    Tamašauskaitė T, Balčiūnaitė A, Vaiciukevičienė A, Selskis A, Pakštas V (2012) Investigation of nanostructured platinum–nickel supported on the titanium surface as electrocatalysts for alkaline fuel cells. J Power Sources 208:242–247CrossRefGoogle Scholar
  172. 172.
    He X, Hu C (2011) Building three-dimensional Pt catalysts on TiO2 nanorod arrays for effective ethanol electrooxidation. J Power Sources 196(6):3119–3123CrossRefGoogle Scholar
  173. 173.
    Chen X-m, Lin Z-j, Jia T-t, Cai Z-m, Huang X-l, Jiang Y-q, Chen X, Chen G-n (2009) A facile synthesis of palladium nanoparticles supported on functional carbon nanotubes and its novel catalysis for ethanol electrooxidation. Anal Chim Acta 650(1):54–58CrossRefGoogle Scholar
  174. 174.
    Cao L, Sun G, Li H, Xin Q (2007) Carbon-supported IrSn catalysts for a direct ethanol fuel cell. Electrochem Commun 9(10):2541–2546CrossRefGoogle Scholar
  175. 175.
    Pandey RK, Lakshminarayanan V (2010) Enhanced electrocatalytic activity of Pd-dispersed 3,4-polyethylenedioxythiophene film in hydrogen evolution and ethanol electro-oxidation reactions. J Phys Chem C 114(18):8507–8514CrossRefGoogle Scholar
  176. 176.
    Nie M, Tang H, Wei Z, Jiang SP, Shen PK (2007) Highly efficient AuPd–WC/C electrocatalyst for ethanol oxidation. Electrochem Commun 9(9):2375–2379CrossRefGoogle Scholar
  177. 177.
    Miao F, Tao B (2011) Methanol and ethanol electrooxidation at 3D ordered silicon microchannel plates electrode modified with nickel-palladium nanoparticles in alkaline. Electrochim Acta 56(19):6709–6714CrossRefGoogle Scholar
  178. 178.
    Wang X, Wang W, Qi Z, Zhao C, Ji H, Zhang Z (2010) Fabrication, microstructure and electrocatalytic property of novel nanoporous palladium composites. J Alloy Compd 508(2):463–470CrossRefGoogle Scholar
  179. 179.
    Dai L, Jiang L-P, Abdel-Halim ES, Zhu J-J (2011) The fabrication of palladium hollow sphere array and application as highly active electrocatalysts for the direct oxidation of ethanol. Electrochem Commun 13(12):1525–1528CrossRefGoogle Scholar
  180. 180.
    Maiyalagan T, Scott K (2010) Performance of carbon nanofiber supported Pd–Ni catalysts for electro-oxidation of ethanol in alkaline medium. J Power Sources 195(16):5246–5251CrossRefGoogle Scholar
  181. 181.
    Hu FP, Shen PK (2007) Ethanol oxidation on hexagonal tungsten carbide single nanocrystal-supported Pd electrocatalyst. J Power Sources 173(2):877–881CrossRefGoogle Scholar
  182. 182.
    Xu C, Tian Z, Shen P, Jiang SP (2008) Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim Acta 53(5):2610–2618CrossRefGoogle Scholar
  183. 183.
    Qi Z, Geng H, Wang X, Zhao C, Ji H, Zhang C, Xu J, Zhang Z (2011) Novel nanocrystalline PdNi alloy catalyst for methanol and ethanol electro-oxidation in alkaline media. J Power Sources 196(14):5823–5828CrossRefGoogle Scholar
  184. 184.
    Shen SY, Zhao TS, Xu JB (2010) Carbon-supported bimetallic PdIr catalysts for ethanol oxidation in alkaline media. Electrochim Acta 55(28):9179–9184CrossRefGoogle Scholar
  185. 185.
    Hu F, Cui X, Chen W (2010) Ultralong-CNTA-supported Pd-based anodes for ethanol oxidation. J Phys Chem C 114(47):20284–20289CrossRefGoogle Scholar
  186. 186.
    Wang H, Xu C, Cheng F, Jiang S (2007) Pd nanowire arrays as electrocatalysts for ethanol electrooxidation. Electrochem Commun 9(5):1212–1216CrossRefGoogle Scholar
  187. 187.
    Pandey RK, Lakshminarayanan V (2009) Electro-oxidation of formic acid, methanol, and ethanol on electrodeposited Pd-polyaniline nanofiber films in acidic and alkaline medium. J Phys Chem C 113(52):21596–21603CrossRefGoogle Scholar
  188. 188.
    Shen PK, Xu C (2006) Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochem Commun 8(1):184–188CrossRefGoogle Scholar
  189. 189.
    Ramulifho T, Ozoemena KI, Modibedi RM, Jafta CJ, Mathe MK (2012) Fast microwave-assisted solvothermal synthesis of metal nanoparticles (Pd, Ni, Sn) supported on sulfonated MWCNTs: pd-based bimetallic catalysts for ethanol oxidation in alkaline medium. Electrochim Acta 59:310–320CrossRefGoogle Scholar
  190. 190.
    Zheng HT, Li Y, Chen S, Shen PK (2006) Effect of support on the activity of Pd electrocatalyst for ethanol oxidation. J Power Sources 163(1):371–375CrossRefGoogle Scholar
  191. 191.
    Zhang Z, Xin L, Sun K, Li W (2011) Pd–Ni electrocatalysts for efficient ethanol oxidation reaction in alkaline electrolyte. Int J Hydrogen Energy 36(20):12686–12697CrossRefGoogle Scholar
  192. 192.
    Xu C, Hu Y, Rong J, Jiang SP, Liu Y (2007) Ni hollow spheres as catalysts for methanol and ethanol electrooxidation. Electrochem Commun 9(8):2009–2012CrossRefGoogle Scholar
  193. 193.
    Liang YQ, Cui ZD, Zhu SL, Liu Y, Yang XJ (2011) Silver nanoparticles supported on TiO2 nanotubes as active catalysts for ethanol oxidation. J Catal 278(2):276–287CrossRefGoogle Scholar
  194. 194.
    Nguyen ST, Yang Y, Wang X (2012) Ethanol electro-oxidation activity of Nb-doped-TiO2 supported PdAg catalysts in alkaline media. Appl Catal B 113–114:261–270Google Scholar
  195. 195.
    Hu G, Nitze F, Barzegar HR, Sharifi T, Miko Ε, ajczuk A, Tai C-W, Borodzinski A, Wågberg T (2012) Palladium nanocrystals supported on helical carbon nanofibers for highly efficient electro-oxidation of formic acid, methanol and ethanol in alkaline electrolytes. J Power Sources 209:236–242CrossRefGoogle Scholar
  196. 196.
    Li G, Jiang L, Jiang Q, Wang S, Sun G (2011) Preparation and characterization of PdxAgy/C electrocatalysts for ethanol electrooxidation reaction in alkaline media. Electrochim Acta 56(22):7703–7711CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, School of EngineeringUniversity of ThessalyVolosGreece

Personalised recommendations