Journal of Applied Electrochemistry

, Volume 43, Issue 2, pp 209–215 | Cite as

Emission spectra and transient photovoltage in dye-sensitized solar cells under stress tests

  • M. GiustiniEmail author
  • D. Angelone
  • M. Parente
  • D. Dini
  • F. DeckerEmail author
  • A. Lanuti
  • A. Reale
  • T. Brown
  • A. di Carlo
Original Paper


Dye-sensitized solar cells have been tested before, during, and after stress tests performed either under intense Xe-lamp illumination (equivalent to 1 sun up to 2.5 sun) or under thermal cycles between room T and 80 °C. In-situ emission spectra and transient photovoltage decay curves have been taken to monitor the cell aging conditions. Incipient degradation phenomena in aged cells can be detected by changes in emission intensity, maximum photovoltage and in the time constant of photovoltage decay. UV-filtering of the Xe beam can prevent such cell degradation, provided the cell overheating is avoided.


Dye-sensitized solar cell (DSC) Solar energy conversion Sensitizer emission Photovoltage transients Aging Accelerated tests 



M. G. thanks the CSGI for the partial financial support. The authors wish to thank both Referees for their precious suggestions that increased the readability of the manuscript.

Supplementary material

10800_2012_484_MOESM1_ESM.docx (4.1 mb)
Supplementary material 1 (DOCX 4200 kb)


  1. 1.
    O’Regan B, Grätzel M (1991) Nature 353:737CrossRefGoogle Scholar
  2. 2.
    Ashgar MI, Miettunen K, Halme J, Vahermaa P, Toivola M, Aitola K, Lund P (2010) Energy Environ Sci 3:418CrossRefGoogle Scholar
  3. 3.
    Nazeeruddin MK, De Angelis F, Fantacci S, Selloni A, Viscardi G, Liska P, Ito S, Takeru B, Grätzel M (2005) J Am Chem Soc 127:16835CrossRefGoogle Scholar
  4. 4.
    Gao F, Wang Y, Shi D, Zhang J, Wang M, Jing X, Humphry-Baker R, Wang P, Zakeeruddin SM, Grätzel M (2008) J Am Chem Soc 130:10720CrossRefGoogle Scholar
  5. 5.
    Bessho T, Zakeeruddin SM, Yeh CY, Wei-Guang Diau E, Grätzel M (2010) Angewandte Chem Int Ed 49:6646CrossRefGoogle Scholar
  6. 6.
    Yella A, Lee HW, Tsao HN, Yi CY, Chandiran AK, Nazeeruddin MK, Diau EWG, Yeh CY, Zakeeruddin SM, Grätzel M (2011) Science 334:629CrossRefGoogle Scholar
  7. 7.
    Hinsch A, Kroon JM, Kern R, Uhlendorf I, Holzbock J, Meyer A, Ferber J (2001) Progr Photovolt Res Appl 9:425CrossRefGoogle Scholar
  8. 8.
    Grünwald R, Tributsch H (1997) J Phys Chem B 101:2564CrossRefGoogle Scholar
  9. 9.
    Kay A, Grätzel M (1996) Sol Energy Mater Sol Cells 44:99CrossRefGoogle Scholar
  10. 10.
    Nazeeruddin MK, Kay A, Rodicio I, Humphry-Baker R, Müller E, Liska P, Vlachopoulos, Grätzel M (1993) J Am Chem Soc 115:6382CrossRefGoogle Scholar
  11. 11.
    Ikegami M, Suzuki J, Teshima K, Kawaraya M, Miyakasa T (2009) Sol Energy Mater Sol Cells 93:836CrossRefGoogle Scholar
  12. 12.
    Wang P, Zakeeruddin SM, Moser JE, Nazeeruddin MK, Sekiguchi T, Grätzel M (2003) Nature Mater 2:402CrossRefGoogle Scholar
  13. 13.
    Toivola M, Peltokorpi L, Halme J, Lund P (2007) Sol Energy Mater Sol Cells 91:1733CrossRefGoogle Scholar
  14. 14.
    Sommeling PM, Späth M, Smit HJP, Bakker NJ, Kroon JM (2004) J Photochem Photobiol A 164:137CrossRefGoogle Scholar
  15. 15.
    Matsui H, Okada K, Kitamura T, Tanabe N (2009) Sol Energy Mater Sol Cells 93:1110CrossRefGoogle Scholar
  16. 16.
    Grätzel M (2006) Comptes Rendus Chimie 9:578CrossRefGoogle Scholar
  17. 17.
    Harikisun R, Desilvestro H (2011) Sol Energy 85:1179CrossRefGoogle Scholar
  18. 18.
    Kato N, Higuchi K, Tanaka H, Nakajima J, Sano T, Toyoda T (2011) Sol Energy Mater Sol Cells 95:301CrossRefGoogle Scholar
  19. 19.
    Pettersson H, Gruszecki T (2001) Sol Energy Mater Sol Cells 70:203CrossRefGoogle Scholar
  20. 20.
    Pettersson H, Gruszecki T, Johansson LH, Johander P (2003) Sol Energy Mater Sol Cells 77:405CrossRefGoogle Scholar
  21. 21.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595CrossRefGoogle Scholar
  22. 22.
    Figgenmeier E, Hagfeldt A (2004) Int J Photoenergy 6:127 and references thereinCrossRefGoogle Scholar
  23. 23.
    International Electrotechnical Commission (IEC) (2008) Standards, document number 61646: thin-film terrestrial photovoltaic (PV) modules—Design qualification and type approvalGoogle Scholar
  24. 24.
    International Electrotechnical Commission (IEC) (2002) Standards, document number 60721-2-1: classification of environmental conditions—Part 2–1: Environmental conditions appearing in nature—Temperature and humidityGoogle Scholar
  25. 25.
    Kato N, Takeda Y, Higuchi K, Takeichi A, Sudo E, Tanaka H, Motohiro T, Sano T, Toyoda T (2009) Sol Energy Mater Sol Cells 93:893CrossRefGoogle Scholar
  26. 26.
    Wang Q, Moser JE, Grätzel M (2005) J Phys Chem B 109:14945CrossRefGoogle Scholar
  27. 27.
    Toivola M, Halme J, Peltokorpi L, Lund P (2009) Int J Photoenergy 786429. doi: 10.1155/2009/786429
  28. 28.
    Paulsson H, Kloo L, Hagfeldt A, Boschloo G (2006) J Electroanal Chem 586:56CrossRefGoogle Scholar
  29. 29.
    Schlichthörl G, Huang SY, Sprqague J, Frank AJ (1997) J Phys Chem B 101:8141CrossRefGoogle Scholar
  30. 30.
    Estrada W, Andersson AM, Granqvist CG, Gorenstein A, Decker F (1991) J Mater Res 6:1715CrossRefGoogle Scholar
  31. 31.
    Agrell HG, Lindgren J, Hagfeldt A (2003) Sol Energy 75:169CrossRefGoogle Scholar
  32. 32.
    Sirimanne PM, Jeranko T, Bogdanoff P, Fiechter S, Tributsch H (2003) Semicond Sci Technol 18:708CrossRefGoogle Scholar
  33. 33.
    Hara K, Wang ZS, Cui Y, Furube A, Koumura N (2009) Energy Environ Sci 2:1109CrossRefGoogle Scholar
  34. 34.
    Walker AB, Peter LM, Lobato K, Cameron PJ (2006) J Phys Chem B 110:25504CrossRefGoogle Scholar
  35. 35.
    Cerdeira F, Torriani I, Motisuke P, Lemos V, Decker F (1988) Appl Phys A 46:107–112CrossRefGoogle Scholar
  36. 36.
    Abramovich M, Brasil MJP, Decker F, Moro J, Motisuke P (1985) J Solid State Chem 59:1CrossRefGoogle Scholar
  37. 37.
    Smestad G (1994) Sol Energy Mater Sol Cells 32:273CrossRefGoogle Scholar
  38. 38.
    Lee CY, Hupp JT (2010) Langmuir 26:3760CrossRefGoogle Scholar
  39. 39.
    Bräm O, Canizzo A, Chergui M (2012) Phys Chem Chem Phys 14:7934CrossRefGoogle Scholar
  40. 40.
    Bräm O, Messina F, El-Zohry AM, Canizzo A, Chergui M (2012) Chem Phys 393:51CrossRefGoogle Scholar
  41. 41.
    Lewis LN, Spivak JL, Gasaway S, Williams ED, Guy JY, Manivannan V, Siclovan OP (2006) Sol Energy Mater Sol Cells 90:1041CrossRefGoogle Scholar
  42. 42.
    Boschloo G, Hagfeldt A (2009) Acc Chem Res 42:1819CrossRefGoogle Scholar
  43. 43.
    Gregg BA, Chen S, Ferrere S (2003) J Phys Chem B 107:3019CrossRefGoogle Scholar
  44. 44.
    Duffy NW, Peter LM, Rajapakse RMG, Wijayantha KGU (2000) J Phys Chem B 104:8916CrossRefGoogle Scholar
  45. 45.
    Mastroianni S, Lembo A, Brown TM, Reale A, Di Carlo A (2012) Chem Phys Chem 13:2964. doi: 10.1002/cphc.201200229
  46. 46.
    Mastroianni S, Lanuti A, Penna S, Brown TM, Reale A, Di Carlo A, Decker F (2012) Chem Phys Chem 13:2925. doi: 10.1002/cphc.201200110 Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • M. Giustini
    • 1
    • 2
    Email author
  • D. Angelone
    • 1
  • M. Parente
    • 1
  • D. Dini
    • 1
  • F. Decker
    • 1
    Email author
  • A. Lanuti
    • 3
  • A. Reale
    • 3
  • T. Brown
    • 3
  • A. di Carlo
    • 3
  1. 1.Department of ChemistryUniversity of Roma “La Sapienza”RomeItaly
  2. 2.CSGI c/o Department of ChemistryUniversity of BariBariItaly
  3. 3.Department of Electronic Engineering, CHOSE–Centre for Hybrid and Organic Solar EnergyUniversity of Rome Tor VergataRomeItaly

Personalised recommendations